Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904287723> ?p ?o ?g. }
- W2904287723 endingPage "28" @default.
- W2904287723 startingPage "1" @default.
- W2904287723 abstract "Sensor networks are commonly adopted to collect a variety of measurements in indoor and outdoor settings. However, collecting such measurements from every node in the network, although providing high accuracy and resolution of the phenomena of interest, may easily cause sensors’ battery depletion. In this article, we show that measurement correlation can be successfully exploited to reduce the amount of data collected in the network without significantly sacrificing the monitoring accuracy. In particular, we propose an online adaptive measurement technique with which a subset of nodes are dynamically chosen as monitors while the measurements of the remaining nodes are estimated using the computed correlations. We propose an estimation framework based on jointly Gaussian distributed random variables, and we formulate an optimization problem to select the monitors under a total cost constraint. We show that the problem is NP-Hard and propose three efficient heuristics. We also develop statistical approaches that automatically switch between learning and estimation phases to take into account the variability occurring in real networks. Simulations carried out on real-world traces show that our approach outperforms previous solutions based on compressed sensing, and it can be successfully applied to the real application of solar irradiance prediction of photovoltaics systems." @default.
- W2904287723 created "2018-12-22" @default.
- W2904287723 creator A5009742150 @default.
- W2904287723 creator A5040514677 @default.
- W2904287723 creator A5044871356 @default.
- W2904287723 creator A5082614372 @default.
- W2904287723 date "2018-12-15" @default.
- W2904287723 modified "2023-09-26" @default.
- W2904287723 title "A Framework for the Inference of Sensing Measurements Based on Correlation" @default.
- W2904287723 cites W1680189815 @default.
- W2904287723 cites W1938602245 @default.
- W2904287723 cites W1973117771 @default.
- W2904287723 cites W1991671750 @default.
- W2904287723 cites W2011452458 @default.
- W2904287723 cites W2019796561 @default.
- W2904287723 cites W2031558773 @default.
- W2904287723 cites W2032516225 @default.
- W2904287723 cites W2034959408 @default.
- W2904287723 cites W2038513099 @default.
- W2904287723 cites W2062002220 @default.
- W2904287723 cites W2067652091 @default.
- W2904287723 cites W2075152505 @default.
- W2904287723 cites W2082811521 @default.
- W2904287723 cites W2083397465 @default.
- W2904287723 cites W2084023846 @default.
- W2904287723 cites W2100729440 @default.
- W2904287723 cites W2106742582 @default.
- W2904287723 cites W2122053769 @default.
- W2904287723 cites W2127083809 @default.
- W2904287723 cites W2148134592 @default.
- W2904287723 cites W2159416808 @default.
- W2904287723 cites W2167101736 @default.
- W2904287723 cites W2222783860 @default.
- W2904287723 cites W2227402067 @default.
- W2904287723 cites W2293306430 @default.
- W2904287723 cites W2294732742 @default.
- W2904287723 cites W2344424854 @default.
- W2904287723 cites W2344896637 @default.
- W2904287723 cites W2507955396 @default.
- W2904287723 cites W2510747677 @default.
- W2904287723 cites W2518382015 @default.
- W2904287723 cites W2538489514 @default.
- W2904287723 cites W2558883721 @default.
- W2904287723 cites W2560663865 @default.
- W2904287723 cites W2584825104 @default.
- W2904287723 cites W2585502432 @default.
- W2904287723 cites W2590816369 @default.
- W2904287723 cites W2619983219 @default.
- W2904287723 cites W2624829428 @default.
- W2904287723 cites W2748062499 @default.
- W2904287723 cites W2762746414 @default.
- W2904287723 cites W2774284322 @default.
- W2904287723 cites W2796816127 @default.
- W2904287723 cites W3003506411 @default.
- W2904287723 cites W3102018825 @default.
- W2904287723 cites W4251742697 @default.
- W2904287723 cites W4289236186 @default.
- W2904287723 doi "https://doi.org/10.1145/3272035" @default.
- W2904287723 hasPublicationYear "2018" @default.
- W2904287723 type Work @default.
- W2904287723 sameAs 2904287723 @default.
- W2904287723 citedByCount "6" @default.
- W2904287723 countsByYear W29042877232019 @default.
- W2904287723 countsByYear W29042877232020 @default.
- W2904287723 countsByYear W29042877232022 @default.
- W2904287723 countsByYear W29042877232023 @default.
- W2904287723 crossrefType "journal-article" @default.
- W2904287723 hasAuthorship W2904287723A5009742150 @default.
- W2904287723 hasAuthorship W2904287723A5040514677 @default.
- W2904287723 hasAuthorship W2904287723A5044871356 @default.
- W2904287723 hasAuthorship W2904287723A5082614372 @default.
- W2904287723 hasConcept C111919701 @default.
- W2904287723 hasConcept C119857082 @default.
- W2904287723 hasConcept C121332964 @default.
- W2904287723 hasConcept C124101348 @default.
- W2904287723 hasConcept C124851039 @default.
- W2904287723 hasConcept C127413603 @default.
- W2904287723 hasConcept C127705205 @default.
- W2904287723 hasConcept C154945302 @default.
- W2904287723 hasConcept C163716315 @default.
- W2904287723 hasConcept C24590314 @default.
- W2904287723 hasConcept C2776036281 @default.
- W2904287723 hasConcept C2776214188 @default.
- W2904287723 hasConcept C31258907 @default.
- W2904287723 hasConcept C41008148 @default.
- W2904287723 hasConcept C62520636 @default.
- W2904287723 hasConcept C62611344 @default.
- W2904287723 hasConcept C66938386 @default.
- W2904287723 hasConcept C78519656 @default.
- W2904287723 hasConcept C79403827 @default.
- W2904287723 hasConceptScore W2904287723C111919701 @default.
- W2904287723 hasConceptScore W2904287723C119857082 @default.
- W2904287723 hasConceptScore W2904287723C121332964 @default.
- W2904287723 hasConceptScore W2904287723C124101348 @default.
- W2904287723 hasConceptScore W2904287723C124851039 @default.
- W2904287723 hasConceptScore W2904287723C127413603 @default.
- W2904287723 hasConceptScore W2904287723C127705205 @default.
- W2904287723 hasConceptScore W2904287723C154945302 @default.