Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904290041> ?p ?o ?g. }
- W2904290041 endingPage "127" @default.
- W2904290041 startingPage "116" @default.
- W2904290041 abstract "Abstract Liver cancer is quite common type of cancer among individuals worldwide. Hepatocellular carcinoma (HCC) is the malignancy of liver cancer. It has high impact on individual’s life and investigating it early can decline the number of annual deaths. This study proposes a new machine learning approach to detect HCC using 165 patients. Ten well-known machine learning algorithms are employed. In the preprocessing step, the normalization approach is used. The genetic algorithm coupled with stratified 5-fold cross-validation method is applied twice, first for parameter optimization and then for feature selection. In this work, support vector machine (SVM) (type C-SVC) with new 2level genetic optimizer (genetic training) and feature selection yielded the highest accuracy and F1-Score of 0.8849 and 0.8762 respectively. Our proposed model can be used to test the performance with huge database and aid the clinicians." @default.
- W2904290041 created "2018-12-22" @default.
- W2904290041 creator A5011024441 @default.
- W2904290041 creator A5014000715 @default.
- W2904290041 creator A5029857334 @default.
- W2904290041 creator A5045783666 @default.
- W2904290041 date "2019-05-01" @default.
- W2904290041 modified "2023-10-02" @default.
- W2904290041 title "A novel machine learning approach for early detection of hepatocellular carcinoma patients" @default.
- W2904290041 cites W1964636469 @default.
- W2904290041 cites W1974183452 @default.
- W2904290041 cites W1980135938 @default.
- W2904290041 cites W1993761347 @default.
- W2904290041 cites W2017188169 @default.
- W2904290041 cites W2021093304 @default.
- W2904290041 cites W2021181675 @default.
- W2904290041 cites W2030691215 @default.
- W2904290041 cites W2032655680 @default.
- W2904290041 cites W2057902044 @default.
- W2904290041 cites W2060758175 @default.
- W2904290041 cites W2069914810 @default.
- W2904290041 cites W2115969689 @default.
- W2904290041 cites W2129603678 @default.
- W2904290041 cites W2131912874 @default.
- W2904290041 cites W2155632266 @default.
- W2904290041 cites W2158698691 @default.
- W2904290041 cites W2170505850 @default.
- W2904290041 cites W2191006491 @default.
- W2904290041 cites W2339876161 @default.
- W2904290041 cites W2409983459 @default.
- W2904290041 cites W2505204749 @default.
- W2904290041 cites W2515502085 @default.
- W2904290041 cites W2574038793 @default.
- W2904290041 cites W2590210438 @default.
- W2904290041 cites W2593665141 @default.
- W2904290041 cites W2619651298 @default.
- W2904290041 cites W2619937264 @default.
- W2904290041 cites W2752008993 @default.
- W2904290041 cites W2755507768 @default.
- W2904290041 cites W2756847523 @default.
- W2904290041 cites W2757722543 @default.
- W2904290041 cites W2765725292 @default.
- W2904290041 cites W2766508190 @default.
- W2904290041 cites W2767076830 @default.
- W2904290041 cites W2790446188 @default.
- W2904290041 cites W2791189374 @default.
- W2904290041 cites W2794404680 @default.
- W2904290041 cites W2795101923 @default.
- W2904290041 cites W2795340004 @default.
- W2904290041 cites W2795959543 @default.
- W2904290041 cites W2797694788 @default.
- W2904290041 cites W2800459751 @default.
- W2904290041 cites W2801000404 @default.
- W2904290041 cites W2806806521 @default.
- W2904290041 cites W2807062572 @default.
- W2904290041 cites W2884238387 @default.
- W2904290041 cites W2888080673 @default.
- W2904290041 cites W2889838428 @default.
- W2904290041 cites W2899432087 @default.
- W2904290041 doi "https://doi.org/10.1016/j.cogsys.2018.12.001" @default.
- W2904290041 hasPublicationYear "2019" @default.
- W2904290041 type Work @default.
- W2904290041 sameAs 2904290041 @default.
- W2904290041 citedByCount "77" @default.
- W2904290041 countsByYear W29042900412019 @default.
- W2904290041 countsByYear W29042900412020 @default.
- W2904290041 countsByYear W29042900412021 @default.
- W2904290041 countsByYear W29042900412022 @default.
- W2904290041 countsByYear W29042900412023 @default.
- W2904290041 crossrefType "journal-article" @default.
- W2904290041 hasAuthorship W2904290041A5011024441 @default.
- W2904290041 hasAuthorship W2904290041A5014000715 @default.
- W2904290041 hasAuthorship W2904290041A5029857334 @default.
- W2904290041 hasAuthorship W2904290041A5045783666 @default.
- W2904290041 hasConcept C119857082 @default.
- W2904290041 hasConcept C126322002 @default.
- W2904290041 hasConcept C154945302 @default.
- W2904290041 hasConcept C2778019345 @default.
- W2904290041 hasConcept C41008148 @default.
- W2904290041 hasConcept C71924100 @default.
- W2904290041 hasConceptScore W2904290041C119857082 @default.
- W2904290041 hasConceptScore W2904290041C126322002 @default.
- W2904290041 hasConceptScore W2904290041C154945302 @default.
- W2904290041 hasConceptScore W2904290041C2778019345 @default.
- W2904290041 hasConceptScore W2904290041C41008148 @default.
- W2904290041 hasConceptScore W2904290041C71924100 @default.
- W2904290041 hasLocation W29042900411 @default.
- W2904290041 hasOpenAccess W2904290041 @default.
- W2904290041 hasPrimaryLocation W29042900411 @default.
- W2904290041 hasRelatedWork W2961085424 @default.
- W2904290041 hasRelatedWork W3046775127 @default.
- W2904290041 hasRelatedWork W3107474891 @default.
- W2904290041 hasRelatedWork W3170094116 @default.
- W2904290041 hasRelatedWork W3209574120 @default.
- W2904290041 hasRelatedWork W4205958290 @default.
- W2904290041 hasRelatedWork W4286629047 @default.
- W2904290041 hasRelatedWork W4306321456 @default.
- W2904290041 hasRelatedWork W4306674287 @default.