Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904294973> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2904294973 abstract "Syndrome differentiation in Traditional Chinese Medicine (TCM) is the process of understanding and reasoning body condition, which is the essential step and premise of effective treatments. However, due to its complexity and lack of standardization, it is challenging to achieve. In this study, we consider each patient's record as a one-dimensional image and symptoms as pixels, in which missing and negative values are represented by zero pixels, labeled by one or more syndromes in diabetes. The objective is to find relevant symptoms first and then map them to proper syndromes, that is similar to the object detection problem in computer vision. Inspired from it, we employ multi-instance multi-task learning combined with the convolutional neural network (MIMT-CNN) for syndrome differentiation, which takes region proposals as input and output image labels directly. The neural network consists of region proposals generation, convolutional layer, fully connected layer, and max pooling (multi-instance pooling) layer followed by the sigmoid function in each syndrome prediction task for image representation learning and final results generation. On the diabetes dataset, it performs better than all other baseline methods. Moreover, it shows stability and reliability to generate results, even on the dataset with small sample size, a large number of missing values and noises." @default.
- W2904294973 created "2018-12-22" @default.
- W2904294973 creator A5003933623 @default.
- W2904294973 creator A5034597557 @default.
- W2904294973 creator A5063787253 @default.
- W2904294973 creator A5085086413 @default.
- W2904294973 date "2018-12-01" @default.
- W2904294973 modified "2023-09-24" @default.
- W2904294973 title "CNN based Multi-Instance Multi-Task Learning for Syndrome Differentiation of Diabetic Patients" @default.
- W2904294973 cites W1482608529 @default.
- W2904294973 cites W1498436455 @default.
- W2904294973 cites W1517032997 @default.
- W2904294973 cites W1536680647 @default.
- W2904294973 cites W1984756734 @default.
- W2904294973 cites W1986908923 @default.
- W2904294973 cites W1988195734 @default.
- W2904294973 cites W1990467981 @default.
- W2904294973 cites W2027266161 @default.
- W2904294973 cites W2053463056 @default.
- W2904294973 cites W2057716533 @default.
- W2904294973 cites W2062930337 @default.
- W2904294973 cites W2096518473 @default.
- W2904294973 cites W2105497545 @default.
- W2904294973 cites W2110119381 @default.
- W2904294973 cites W2116360511 @default.
- W2904294973 cites W2117708629 @default.
- W2904294973 cites W2137613347 @default.
- W2904294973 cites W2147222003 @default.
- W2904294973 cites W2154107530 @default.
- W2904294973 cites W2170540858 @default.
- W2904294973 cites W2241525425 @default.
- W2904294973 cites W2531897166 @default.
- W2904294973 cites W2620173806 @default.
- W2904294973 cites W2913340405 @default.
- W2904294973 cites W2962959909 @default.
- W2904294973 doi "https://doi.org/10.1109/bibm.2018.8621344" @default.
- W2904294973 hasPublicationYear "2018" @default.
- W2904294973 type Work @default.
- W2904294973 sameAs 2904294973 @default.
- W2904294973 citedByCount "5" @default.
- W2904294973 countsByYear W29042949732019 @default.
- W2904294973 countsByYear W29042949732020 @default.
- W2904294973 countsByYear W29042949732022 @default.
- W2904294973 crossrefType "proceedings-article" @default.
- W2904294973 hasAuthorship W2904294973A5003933623 @default.
- W2904294973 hasAuthorship W2904294973A5034597557 @default.
- W2904294973 hasAuthorship W2904294973A5063787253 @default.
- W2904294973 hasAuthorship W2904294973A5085086413 @default.
- W2904294973 hasBestOaLocation W29042949732 @default.
- W2904294973 hasConcept C119857082 @default.
- W2904294973 hasConcept C127413603 @default.
- W2904294973 hasConcept C154945302 @default.
- W2904294973 hasConcept C201995342 @default.
- W2904294973 hasConcept C2780451532 @default.
- W2904294973 hasConcept C28006648 @default.
- W2904294973 hasConcept C41008148 @default.
- W2904294973 hasConceptScore W2904294973C119857082 @default.
- W2904294973 hasConceptScore W2904294973C127413603 @default.
- W2904294973 hasConceptScore W2904294973C154945302 @default.
- W2904294973 hasConceptScore W2904294973C201995342 @default.
- W2904294973 hasConceptScore W2904294973C2780451532 @default.
- W2904294973 hasConceptScore W2904294973C28006648 @default.
- W2904294973 hasConceptScore W2904294973C41008148 @default.
- W2904294973 hasLocation W29042949731 @default.
- W2904294973 hasLocation W29042949732 @default.
- W2904294973 hasOpenAccess W2904294973 @default.
- W2904294973 hasPrimaryLocation W29042949731 @default.
- W2904294973 hasRelatedWork W1812322370 @default.
- W2904294973 hasRelatedWork W2597787948 @default.
- W2904294973 hasRelatedWork W2784094750 @default.
- W2904294973 hasRelatedWork W2961085424 @default.
- W2904294973 hasRelatedWork W3047894882 @default.
- W2904294973 hasRelatedWork W3095538999 @default.
- W2904294973 hasRelatedWork W3193517282 @default.
- W2904294973 hasRelatedWork W3200098538 @default.
- W2904294973 hasRelatedWork W3200361725 @default.
- W2904294973 hasRelatedWork W4226315942 @default.
- W2904294973 isParatext "false" @default.
- W2904294973 isRetracted "false" @default.
- W2904294973 magId "2904294973" @default.
- W2904294973 workType "article" @default.