Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904295648> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2904295648 abstract "In order to ensure driving safely, the driving safety assistance system must be able to aware of potential collision accidents in advance, especially significant for the intersection where traffic accidents occur more frequently. In the proposed approach, we utilized the widely adopted architecture of recurrent neural networks, Long-Short Term Memory networks (LSTM) architecture to form a deep stacked LSTM network which can accurately predict future longitudinal and lateral locations for vehicles. Considering that VANETs is one of the most important applications for improving the safety of driving, and in order to reduce the system’s communication and computational costs, a vehicle intersection collision monitoring algorithm based on VANETs and uncertain trajectories is proposed. The algorithm is divided into two categories: uncertain trajectories prediction algorithm and vehicle collision monitoring algorithm. The proposed approach provides approximate answers to the user at the users required level of accuracy while achieving near-optimal communication and computational costs. Finally, extensive experiments were conducted to show the efficiency and efficacy of the proposed approach." @default.
- W2904295648 created "2018-12-22" @default.
- W2904295648 creator A5014085019 @default.
- W2904295648 creator A5047968661 @default.
- W2904295648 creator A5071577305 @default.
- W2904295648 creator A5080389312 @default.
- W2904295648 date "2018-10-01" @default.
- W2904295648 modified "2023-09-23" @default.
- W2904295648 title "Vehicle Intersection Collision Monitoring Algorithm Based on VANETs and Uncertain Trajectories" @default.
- W2904295648 cites W1810943226 @default.
- W2904295648 cites W1998968879 @default.
- W2904295648 cites W2064675550 @default.
- W2904295648 cites W2091392553 @default.
- W2904295648 cites W2105787408 @default.
- W2904295648 cites W2424778531 @default.
- W2904295648 cites W2436282301 @default.
- W2904295648 cites W2465597433 @default.
- W2904295648 cites W2564701384 @default.
- W2904295648 cites W2734413633 @default.
- W2904295648 cites W2735275921 @default.
- W2904295648 cites W2741066535 @default.
- W2904295648 cites W2742953661 @default.
- W2904295648 cites W2772499873 @default.
- W2904295648 cites W2782774414 @default.
- W2904295648 cites W2951188428 @default.
- W2904295648 doi "https://doi.org/10.1109/itst.2018.8566767" @default.
- W2904295648 hasPublicationYear "2018" @default.
- W2904295648 type Work @default.
- W2904295648 sameAs 2904295648 @default.
- W2904295648 citedByCount "1" @default.
- W2904295648 countsByYear W29042956482020 @default.
- W2904295648 crossrefType "proceedings-article" @default.
- W2904295648 hasAuthorship W2904295648A5014085019 @default.
- W2904295648 hasAuthorship W2904295648A5047968661 @default.
- W2904295648 hasAuthorship W2904295648A5071577305 @default.
- W2904295648 hasAuthorship W2904295648A5080389312 @default.
- W2904295648 hasConcept C11413529 @default.
- W2904295648 hasConcept C120314980 @default.
- W2904295648 hasConcept C121704057 @default.
- W2904295648 hasConcept C123657996 @default.
- W2904295648 hasConcept C127413603 @default.
- W2904295648 hasConcept C142362112 @default.
- W2904295648 hasConcept C153349607 @default.
- W2904295648 hasConcept C154945302 @default.
- W2904295648 hasConcept C171146098 @default.
- W2904295648 hasConcept C22212356 @default.
- W2904295648 hasConcept C2780864053 @default.
- W2904295648 hasConcept C38652104 @default.
- W2904295648 hasConcept C41008148 @default.
- W2904295648 hasConcept C50644808 @default.
- W2904295648 hasConcept C64543145 @default.
- W2904295648 hasConcept C79403827 @default.
- W2904295648 hasConcept C79487989 @default.
- W2904295648 hasConceptScore W2904295648C11413529 @default.
- W2904295648 hasConceptScore W2904295648C120314980 @default.
- W2904295648 hasConceptScore W2904295648C121704057 @default.
- W2904295648 hasConceptScore W2904295648C123657996 @default.
- W2904295648 hasConceptScore W2904295648C127413603 @default.
- W2904295648 hasConceptScore W2904295648C142362112 @default.
- W2904295648 hasConceptScore W2904295648C153349607 @default.
- W2904295648 hasConceptScore W2904295648C154945302 @default.
- W2904295648 hasConceptScore W2904295648C171146098 @default.
- W2904295648 hasConceptScore W2904295648C22212356 @default.
- W2904295648 hasConceptScore W2904295648C2780864053 @default.
- W2904295648 hasConceptScore W2904295648C38652104 @default.
- W2904295648 hasConceptScore W2904295648C41008148 @default.
- W2904295648 hasConceptScore W2904295648C50644808 @default.
- W2904295648 hasConceptScore W2904295648C64543145 @default.
- W2904295648 hasConceptScore W2904295648C79403827 @default.
- W2904295648 hasConceptScore W2904295648C79487989 @default.
- W2904295648 hasLocation W29042956481 @default.
- W2904295648 hasOpenAccess W2904295648 @default.
- W2904295648 hasPrimaryLocation W29042956481 @default.
- W2904295648 hasRelatedWork W1914402804 @default.
- W2904295648 hasRelatedWork W2075358673 @default.
- W2904295648 hasRelatedWork W2120274299 @default.
- W2904295648 hasRelatedWork W2131140118 @default.
- W2904295648 hasRelatedWork W2148872350 @default.
- W2904295648 hasRelatedWork W2269728688 @default.
- W2904295648 hasRelatedWork W2329684411 @default.
- W2904295648 hasRelatedWork W2379718309 @default.
- W2904295648 hasRelatedWork W2994588221 @default.
- W2904295648 hasRelatedWork W651240527 @default.
- W2904295648 isParatext "false" @default.
- W2904295648 isRetracted "false" @default.
- W2904295648 magId "2904295648" @default.
- W2904295648 workType "article" @default.