Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904296939> ?p ?o ?g. }
- W2904296939 endingPage "127" @default.
- W2904296939 startingPage "98" @default.
- W2904296939 abstract "Future Science Book SeriesQuality Assurance & Quality Control of Environmental Field Sampling Quality assurance/quality control in stormwater samplingDavid McCarthy & Daren HarmelDavid McCarthyDavid McCarthy is a Senior Lecturer in the Civil Engineering Department, Monash University (Melbourne, Australia). He completed his PhD in water quality engineering and developed a predictive model for the generation of fecal microorganisms in urban stormwater. His published works include those that describe the uncertainties of stormwater monitoring.Search for more papers by this author & Daren HarmelDaren Harmel is Agricultural Engineer and Research Leader of the Agricultural Research Service – US Department of Agriculture Grassland, Soil and Water Research Laboratory in Temple (TX, USA). He represents the Agricultural Research Service on the National Water Monitoring Council’s Methods and Data Comparability Board in the USA. Much of his research has focused on methodology for water quality data collection and uncertainty associated with these data.Search for more papers by this authorPublished Online:24 Feb 2014https://doi.org/10.4155/ebo.13.475AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInReddit View chapterAbstract: Sampling stormwater presents unique challenges because stormwater flow is relatively short-lived with drastic variability. Furthermore, storm events often occur with little advance warning, outside conventional work hours and under adverse weather conditions. Therefore, most stormwater sampling projects utilize automated water quality samplers so that personnel are not forced to travel to multiple sites during events and manually collect samples under potentially hazardous conditions. This chapter discusses project objectives and resource considerations along with discharge measurement, sample collection, number of samples required, and the resulting uncertainty in reported constituent concentrations and loads. This will assist technical staff and project managers in designing, implementing and operating stormwater sampling projects, while efficiently utilizing project resources and minimizing data uncertainty. References1 US EPA. NPDES Storm Water Sampling Guideance Document. Office of Water, US EPA, Washington DC, USA (1992) . Google Scholar2 US EPA. Industrial Stormwater Monitoring and Sampling Guide. US EPA, Washington DC, USA (2009) . Google Scholar3 US EPA. Final National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges from Construction Activities. US EPA, Washington DC, USA (2010) . Google Scholar4 US EPA. MS4 Permit Improvement Guide. Office of Water, US EPA, Washington DC, USA (2010) . Google Scholar5 EU Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. EU, Brussels, Belgium (2000) . Google Scholar6 ANZECC. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council, Canberra, Australia (2000) . Google Scholar7 EPA Victoria. Baywide Water Quality Monitoring Program: Milestone Report No. 9 EPA Victoria, Melbourne, Australia (2012) . Google Scholar8 NHMRC. Australian Guidelines for Water Recycling: Stormwater Harvesting and Reuse. National Health and Medical Research Council, Canberra, Australia (2009) . Google Scholar9 Melbourne Water. Service Delivery: Waterways. Melbourne Water, Melbourne, Australia (2012) . Google Scholar10 Harmel RD , Smith DR , Haney RL , Dozier M . Nitrogen and phosphorus runoff from cropland and pasture fields fertilized with poultry litter . J.Soil Water Conserv. 64 , 400 – 412 (2009) . Crossref, Google Scholar11 Hathaway JM , Hunt WF , Graves AK , Wright JD . Field evaluation of bioretention indicator bacteria sequestration in Wilmington, North Carolina . J. Environ. Eng. 137 , 1103 – 1113 (2011) . Crossref, CAS, Google Scholar12 McCarthy DT , Hathaway JM , Hunt WF , Deletic A . Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff . Water Res. 46 , 6661 – 6670 (2012) . Crossref, Medline, CAS, Google Scholar13 Makepeace DK , Smith DW , Stanley SJ . Urban stormwater quality: summary of contaminant data . Crit. Rev. Environ. Sci. Tech. 25 , 93 – 139 (1995) . Crossref, CAS, Google Scholar14 Duncan HP . Urban stormwater quality: a statisical overview. A Statistical Overview, Report 99/3. Cooperative Research Centre for Catchment Hydrology, Melbourne, Australia (1999) . Google Scholar15 Harmel RD , Karthikeyan R , Gentry T , Srinivasan R . Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow . Trans. ASABE 53 (6) , 1833 – 1841 (2010) . Crossref, Google Scholar16 Taylor GD , Fletcher TD , Wong THF , Breen PF , Duncan HP . Nitrogen composition in urban runoff – implications for stormwater management . Water Res. 39 , 1982 – 1989 (2005) . Crossref, Medline, CAS, Google Scholar17 Hathaway JM , Hunt WF , Simmons Lii OD . Statistical evaluation of factors affecting indicator bacteria in urban storm-water runoff . J. Environ. Eng. 136 , 1360 – 1368 (2010) . Crossref, CAS, Google Scholar18 Carle MV , Halpin PN , Stow CA . Patterns of watershed urbanization and impacts on water quality . J. Am. Water Res. Assoc. 41 , 693 – 708 (2005) . Crossref, Google Scholar19 US EPA. Monitoring Guidance for Determining the Effectiveness of Nonpoint-Source Controls. US EPA, Washington DC, USA (1997) . Google Scholar20 Harmel RD , King KW , Haggard BE , Wren DG , Sheridan JM . Practical guidance for discharge and water quality data collection on small watersheds . Trans. ASABE 49 (4) , 937 – 948 (2006) . Crossref, Google Scholar21 De Jonge H , Rothenberg G . New device and method for flux-proportional sampling of mobile solutes in soil and groundwater . Environ. Sci. Tech. 39 , 274 – 282 (2005) . Crossref, Medline, CAS, Google Scholar22 Rozemeijer J , Van Der Velde Y , De Jonge H , Van Geer F , Broers HP , Bierkens M . Application and evaluation of a new passive sampler for measuring average solute concentrations in a catchment scale water quality monitoring study . Environ. Sci. Tech. 44 , 1353 – 1359 (2010) . Crossref, Medline, CAS, Google Scholar23 Birch H . Velocity dependant sampling of micropollutants in stormwater using a flow-through passive sampler. Monitoring of priority pollutants in dynamic stormwater discharges from urban areas [PhD thesis]. Technical University of Denmark, Lyngby, Denmark (2012) . Google Scholar24 Métadier M , Bertrand-Krajewski JL . The use of long-term on-line turbidity measurements for the calculation of urban stormwater pollutant concentrations, loads, pollutographs and intra-event fluxes . Water Res. 46 , 6836 – 6856 (2012) . Crossref, Medline, CAS, Google Scholar25 Fletcher TD , Deletic A . Statistical evaluation and optimisation of stormwater quality monitoring programmes . Water Sci. Tech. 56 (12) , 1 – 9 (2007) . Crossref, Medline, CAS, Google Scholar26 Harmel RD , Smith DR , King KW , Slade RM . Estimating storm discharge and water quality data uncertainty: a software tool for monitoring and modeling applications . Environ. Modelling Software 24 (7) , 832 – 842 (2009) . Crossref, Google Scholar27 Davis JR , Koop K . Eutrophication in Australian rivers, reservoirs and estuaries – a southern hemisphere perspective on the science and its implications . Hydrobiologia 559 , 23 – 76 (2006) . Crossref, CAS, Google Scholar28 Lung WS . Phosphorus loads to the Chesapeake Bay: a perspective . J. Water Poll. Control Fed. 58 , 749 – 756 (1986) . CAS, Google Scholar29 Agouridis CT , Edwards DR . The development of relationships between constituent concentrations and generic hydrologic variables . Trans. ASAE 46 (2) , 245 – 256 (2003) . Google Scholar30 Buchanan TJ , Somers WP . Chapter A7: stage measurement at gaging stations. In: Techniques of Water-Resources Investigations of the US Geological Survey, Book 3. US Geological Survey, Washington DC, USA (1982) . Google Scholar31 Buchanan TJ , Somers WP . Chapter A8: discharge measurements at gaging stations. In: Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 3. US Geological Survey, Washington DC, USA (1976) . Google Scholar32 Brakensiek DL , Osborn HB , Rawls WJ . (coordinators). Field Manual for Research in Agricultural Hydrology. Agriculture Handbook No. 224. US Department of Agriculture, Washington DC, USA (1979) . Google Scholar33 Rantz SE et al. Measurement and Computation of Streamflow: Volume 1: Measurement of Stage and Discharge. US Geological Survey, Washington DC, USA , 1 – 284 (1982) . Google Scholar34 Kennedy EJ . Chapter A10: discharge ratings at gaging stations. In: Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 3. US Geological Survey, Washington DC, USA (1984) . Google Scholar35 Chow VT , Maidment DR , Mays LW . Applied Hydrology. McGraw-Hill, NY, USA (1988) . Google Scholar36 Pelletier PM . Uncertainties in the single determination of river discharge: a literature review . Can. J. Civil Eng. 15 (5) , 834 – 850 (1988) . Crossref, Google Scholar37 Carter RW , Davidian J . Chapter A6: general procedure for gaging streams. In: Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 3. US Geological Survey, Washington DC, USA (1989) . Google Scholar38 Sauer VB , Meyer RW . Determination of Error in Individual Discharge Measurements. US Geological Survey, Washington DC, USA (1992) . Google Scholar39 Handbook of Hydrology. Maidment DR (Ed.). McGraw-Hill, NY, USA (1993) . Google Scholar40 Haan CT , Barfield BJ , Hayes JC . Design Hydrology and Sedimentology for Small Catchments. Academic Press, NY, USA (1994) . Google Scholar41 Harmel RD , Cooper RJ , Slade RM , Haney RL , Arnold JG . Cumulative uncertainty in measured streamflow and water quality data for small watersheds . Trans. ASABE 49 (3) , 689 – 701 (2006) . Crossref, CAS, Google Scholar42 Part 600: Introduction. In: National Water Quality Handbook. US Department of Agriculture, Natural Resources Conservation Service Washington DC, USA (1996) . Google Scholar43 Sanders TG , Adrian DD , Joyce JM . Mixing length for representative water quality sampling . J. Water Poll. Control Fed. 49 (12) , 2467 – 2478 (1977) . CAS, Google Scholar44 Vandenberg JA , Ryan MC , Nuell DD , Chu A . Field evaluation of mixing length and attenuation of nutrients and fecal coliform in a wastewater effluent plume . Environ. Monit. Assess. 107 , 45 – 57 (2005) . Crossref, Medline, CAS, Google Scholar45 McGuire PE , Daniel TC , Stoffel D , Andraski B . Sample intake position and loading rates from nonpoint source pollution . Environ. Manage. 4 , 73 – 77 (1980) . Crossref, CAS, Google Scholar46 Gingl P . Water-Quality Assessment of South-Central Texas: Comparison of Water Quality in Surface-Water Samples Collected Manually and by Automated Samplers. US Geological Survey, Washington DC, USA (1999) . Google Scholar47 Harmel RM , Haney RL , Arnold JG . Cumulative uncertainty in measured streamflow and water quality data for small watersheds . Trans. ASABE 49 (3) , 689 – 701 (2006) . Crossref, CAS, Google Scholar48 Selbig WR , Cox A , Bannerman RT . Verification of a depth-integrated sample arm as a means to reduce stratification in urban stormwater sampling . J. Environ. Monit . 14 (4) , 1138 – 1144 (2012) . Crossref, Medline, Google Scholar49 McCarthy DT , Deletic A , Mitchell VG , Fletcher TD , Diaper C . Uncertainties in stormwater E. coli levels . Water Res. 42 (6–7) , 1812 – 1824 (2008) . Crossref, Medline, CAS, Google Scholar50 McCarthy DT , Bach PM , Deletic A . Conducting a Bacterial Budget: a Literature Review. Melbourne Water, Melbourne, Australia (2009) . Google Scholar51 Davies CM , Bavor HJ . The fate of stormwater-associated bacteria in constructed wetland and water pollution control pond systems . J. Appl. Microbiol. 89 , 349 – 360 (2000) . Crossref, Medline, CAS, Google Scholar52 Martin GR , Smoot JL , White KD . A comparison of surface-grab and cross-sectionally integrated streamwater-quality sampling methods . Water Environ. Res. 64 (7) , 866 – 876 (1992) . Crossref, CAS, Google Scholar53 Section A: National Field Manual for Collection of Water-Quality Data. In: Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 9. US Geological Survey, Washington DC, USA (1999) . Google Scholar54 Gettel M , Gulliver JS , Kayhanian M et al. Improving suspended sediment measurements by automatic samplers . J. Environ. Monit. 13 , 2703 – 2709 (2011) . Crossref, Medline, CAS, Google Scholar55 Zigah P . Water Sampling at Pelaez Ranch Using ISCO 3700. Southern DataStream Inc., FL, USA (2005) . Google Scholar56 Dembele A , Becouze C , Bertrand-Krajewski JL , Barillon B , Coquery M , Cren-Olive C . [Prototype for the collection of dry and wet atmospheric deposition: description of the device, operation, and initial results for dissolved metals]. JDHU Journées Doctorales en Hydrologie Urbaine. Nancy, France, 14–15 October 2008 . Google Scholar57 Hach. Sigma 900 MAX All Weather Refrigerated Sampler. Hach Company, CO, USA (2008) . Google Scholar58 Solo-Gabriele HM , Wolfert MA , Desmarais TR , Palmer CJ . Sources of Escherichia coli in a coastal subtropical environment . Appl. Environ. Microbiol. 66 , 230 – 237 (2000) . Crossref, Medline, CAS, Google Scholar59 Boyer DG , Kuczynska E . Storm and seasonal distributions of fecal coliforms and Cryptosporidium in a spring . J. Am. Water Res. Assoc. 39 (6) , 1449 – 1456 (2003) . Crossref, CAS, Google Scholar60 Harmel RD , King KW , Wolfe JE , Torbert HA . Minimum flow considerations for automated storm sampling on small watersheds . Texas J. Sci. 54 (2) , 177 – 188 (2002) . Google Scholar61 McCarthy DT . A traditional first flush assessment of E. coli in urban stormwater runoff . Water Sci. Tech. 60 (11) , 2749 – 2757 (2009) . Crossref, Medline, CAS, Google Scholar62 Bach PM , McCarthy DT , Deletic A . Redefining the stormwater first flush phenomenon . Water Res. 44 , 2487 – 2498 (2010) . Crossref, Medline, CAS, Google Scholar63 Sebastian C , Barraud S , Ribun S . et al. Assessment of chemical and microbial hazards in a full-scale stormwater detention basin: their characteristics, toxicity and fate. Presented at: the 12th International Conference on Urban Drainage. Porto Alegre, Brazil, 11–16 September 2011 . Google Scholar64 Ort C , Lawrence MG , Rieckermann J , Joss A . Sampling for Pharmaceuticals and Personal Care Products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review . Environ. Sci. Tech. 44 , 6024 – 6035 (2010) . Crossref, Medline, CAS, Google Scholar65 Haan CT . Statistical Methods in Hydrology (2nd Edition). Iowa State University Press, IA, USA (2002) . Google Scholar66 Richards RP , Holloway J . Monte Carlo studies of sampling strategies for estimating tributary loads . Water Res. Res. 23 (10) , 1939 – 1948 (1987) . Crossref, CAS, Google Scholar67 Shih G , Abtew W , Obeysekera J . Accuracy of nutrient runoff load calculations using time-composite sampling . Trans. ASAE 37 (2) , 419 – 429 (1994) . Crossref, Google Scholar68 Miller PS , Engel BA , Mohtar RH . Sampling theory and mass load estimation from watershed water quality data. Presented at: the 2000 ASAE International Meeting, Milwaukee, WI, USA, 9–12 July 2000 . Google Scholar69 Leecaster MK , Schiff K , Tiefenthaler LL . Assessment of efficient sampling designs for urban stormwater monitoring . Water Res. 36 , 1556 – 1564 (2002) . Crossref, Medline, CAS, Google Scholar70 King KW , Harmel RD . Comparison of time-based sampling strategies to determine nitrogen loading in plot-scale runoff . Trans. ASAE 47 (5) , 1457 – 1463 (2004) . Crossref, CAS, Google Scholar71 King KW , Harmel RD . Considerations in selecting a water quality sampling strategy . Trans. ASAE 46 (1) , 63 – 73 (2003) . Google Scholar72 Harmel RD , King KW . Uncertainty in measured sediment and nutrient flux in runoff from small agricultural watersheds . Trans. ASAE 48 (5) , 1713 – 1721 (2005) . Crossref, CAS, Google Scholar73 King KW , Harmel RD , Fausey NR . Development and sensitivity of a method to select time- and flow-paced storm event sampling intervals . J. Soil Water Conserv. 60 (6) , 323 – 331 (2005) . Google Scholar74 Lambert D , Maher WA , Hogg I . Changes in phosphorus fractions during storage of lake water . Water Res. 26 (5) , 645 – 648 (1992) . Crossref, CAS, Google Scholar75 Jarvie HP , Withers PJA , Neal C . Review of robust measurement of phosphorus in river water: sampling, storage, fractionation, and sensitivity . Hydrol. Earth Syst. Sci. 6 (1) , 113 – 132 (2002) . Crossref, Google Scholar76 Crane SR , Moore JA . Modeling enteric bacterial die-off: a review . Water Air Soil Poll. 27 , 411 – 439 (1986) . Crossref, Google Scholar77 Kotlash AR , Chessman BC . Effects of water sample preservation and storage on nitrogen and phosphorus determinations: implications for the use of automated sampling equipment . Water Res. 32 (12) , 3731 – 3737 (1998) . Crossref, CAS, Google Scholar78 Ludtke AS , Woodworth MT , Marsh PS . Quality Assurance Results for Routine Water Analysis in U.S. Geological Survey Laboratories, Water Year 1998. US Geological Survey, Washington DC, USA (2000) . Google Scholar79 Bertrand-Krajewski JL , Bardin JP . Uncertainties and representativity of measurements in stormwater storage tanks. In: Global Solutions for Urban Drainage. Strecker EW, Huber WC (Eds). American Society of Civil Engineers, VA, USA , 1 – 14 (2002) . Crossref, Google Scholar80 Francey M , Duncan HP , Deletic A , Fletcher TD . An advance in modelling pollutant loads in urban runoff. Presented at: the 6th International Conference on Urban Drainage Modelling. Dresden, Germany, 5–17 Sepetember 2004 . Google Scholar81 Taylor K . Guidelines for evaluating and expressing the uncertainty of NIST measurement results. Technical Note 1297. National Institute of Standards and Technology, MD, USA (2004) . Google Scholar82 Harmel RD , King KW , Slade RM . Automated storm water sampling on small watersheds . Appl. Eng. Agric. 19 (6) , 667 – 674 (2003) . Crossref, Google ScholarFiguresReferencesRelatedDetailsCited ByBoSL FAL pump: A small, low-cost, easily constructed, 3D-printed peristaltic pump for sampling of watersHardwareX, Vol. 10Modeling Water Quality in Watersheds: From Here to the Next Generation18 November 2020 | Water Resources Research, Vol. 56, No. 11 Quality Assurance & Quality Control of Environmental Field SamplingMetrics Downloaded 19 times History Published online 24 February 2014 Published in print February 2014 Information© Future Science Ltd© Future Science LtdPDF download" @default.
- W2904296939 created "2018-12-22" @default.
- W2904296939 creator A5072677030 @default.
- W2904296939 creator A5088297575 @default.
- W2904296939 date "2014-02-01" @default.
- W2904296939 modified "2023-09-26" @default.
- W2904296939 title "Quality assurance/quality control in stormwater sampling" @default.
- W2904296939 cites W1524580530 @default.
- W2904296939 cites W1525009670 @default.
- W2904296939 cites W1557990902 @default.
- W2904296939 cites W1586566795 @default.
- W2904296939 cites W1965327045 @default.
- W2904296939 cites W1971312595 @default.
- W2904296939 cites W1980863588 @default.
- W2904296939 cites W1981354862 @default.
- W2904296939 cites W1983146033 @default.
- W2904296939 cites W1986384827 @default.
- W2904296939 cites W1987975799 @default.
- W2904296939 cites W1991422864 @default.
- W2904296939 cites W1996306360 @default.
- W2904296939 cites W2003826319 @default.
- W2904296939 cites W2008557454 @default.
- W2904296939 cites W2010377115 @default.
- W2904296939 cites W2013074039 @default.
- W2904296939 cites W2015410592 @default.
- W2904296939 cites W2015714927 @default.
- W2904296939 cites W2017114670 @default.
- W2904296939 cites W2042851460 @default.
- W2904296939 cites W2049829929 @default.
- W2904296939 cites W2051635965 @default.
- W2904296939 cites W2054871389 @default.
- W2904296939 cites W2065653866 @default.
- W2904296939 cites W2068687364 @default.
- W2904296939 cites W2070305865 @default.
- W2904296939 cites W2070920154 @default.
- W2904296939 cites W2072200925 @default.
- W2904296939 cites W2081147588 @default.
- W2904296939 cites W2082644711 @default.
- W2904296939 cites W2083457858 @default.
- W2904296939 cites W2083777567 @default.
- W2904296939 cites W2086526765 @default.
- W2904296939 cites W2091147802 @default.
- W2904296939 cites W2091673606 @default.
- W2904296939 cites W2092505170 @default.
- W2904296939 cites W2101116374 @default.
- W2904296939 cites W2116304421 @default.
- W2904296939 cites W2122463349 @default.
- W2904296939 cites W2130754602 @default.
- W2904296939 cites W2169977269 @default.
- W2904296939 cites W2324901142 @default.
- W2904296939 cites W604913394 @default.
- W2904296939 doi "https://doi.org/10.4155/ebo.13.475" @default.
- W2904296939 hasPublicationYear "2014" @default.
- W2904296939 type Work @default.
- W2904296939 sameAs 2904296939 @default.
- W2904296939 citedByCount "2" @default.
- W2904296939 countsByYear W29042969392020 @default.
- W2904296939 countsByYear W29042969392021 @default.
- W2904296939 crossrefType "other" @default.
- W2904296939 hasAuthorship W2904296939A5072677030 @default.
- W2904296939 hasAuthorship W2904296939A5088297575 @default.
- W2904296939 hasConcept C106131492 @default.
- W2904296939 hasConcept C106436119 @default.
- W2904296939 hasConcept C111472728 @default.
- W2904296939 hasConcept C127413603 @default.
- W2904296939 hasConcept C138885662 @default.
- W2904296939 hasConcept C140779682 @default.
- W2904296939 hasConcept C154945302 @default.
- W2904296939 hasConcept C173051318 @default.
- W2904296939 hasConcept C18903297 @default.
- W2904296939 hasConcept C21547014 @default.
- W2904296939 hasConcept C2775924081 @default.
- W2904296939 hasConcept C2778618615 @default.
- W2904296939 hasConcept C2779530757 @default.
- W2904296939 hasConcept C31972630 @default.
- W2904296939 hasConcept C39432304 @default.
- W2904296939 hasConcept C41008148 @default.
- W2904296939 hasConcept C50477045 @default.
- W2904296939 hasConcept C86803240 @default.
- W2904296939 hasConceptScore W2904296939C106131492 @default.
- W2904296939 hasConceptScore W2904296939C106436119 @default.
- W2904296939 hasConceptScore W2904296939C111472728 @default.
- W2904296939 hasConceptScore W2904296939C127413603 @default.
- W2904296939 hasConceptScore W2904296939C138885662 @default.
- W2904296939 hasConceptScore W2904296939C140779682 @default.
- W2904296939 hasConceptScore W2904296939C154945302 @default.
- W2904296939 hasConceptScore W2904296939C173051318 @default.
- W2904296939 hasConceptScore W2904296939C18903297 @default.
- W2904296939 hasConceptScore W2904296939C21547014 @default.
- W2904296939 hasConceptScore W2904296939C2775924081 @default.
- W2904296939 hasConceptScore W2904296939C2778618615 @default.
- W2904296939 hasConceptScore W2904296939C2779530757 @default.
- W2904296939 hasConceptScore W2904296939C31972630 @default.
- W2904296939 hasConceptScore W2904296939C39432304 @default.
- W2904296939 hasConceptScore W2904296939C41008148 @default.
- W2904296939 hasConceptScore W2904296939C50477045 @default.
- W2904296939 hasConceptScore W2904296939C86803240 @default.
- W2904296939 hasLocation W29042969391 @default.