Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904301341> ?p ?o ?g. }
- W2904301341 endingPage "1547" @default.
- W2904301341 startingPage "1535" @default.
- W2904301341 abstract "Abstract The paper is focused on the evolution of the Earth starting with the planetary accretion and differentiation of the primordial material (similar in composition to CI chondrites) into the core and mantle and the formation of the Moon as a result of the impact of the Earth with a smaller cosmic body. The features of the Hadean eon (ca. 4500–4000 Ma) are described in detail. Frequent meteorite–asteroid bombardments which the Earth experienced in the Hadean could have caused the generation of mafic/ultramafic primary magmas. These magmas also differentiated to produce some granitic magmas, from which zircons crystallized. The repeated meteorite bombardments destroyed the protocrust, which submerged into the mantle to remelt, leaving refractory zircons, indicators of the Early Earth’s geologic conditions, behind. The mantle convection that started in the Archean could possibly be responsible for the Earth’s subsequent endogenous evolution. Long-living deep-seated mantle plumes could have promoted the generation of basalt–komatiitic crust, which, thickening, could have submerged into the mantle as a result of sagduction, where it remelted. Partial melting of the thick crust, leaving eclogite as a residue, could have yielded tonalite–trondhjemite–granodiorite (TTG) melts. TTG rocks are believed to compose the Earth’s protocrust. Banded iron bodies, the only mineral deposits of that time, were produced in the oceans that covered the Earth. This environment, recognized as LID tectonics combined with plume tectonics, probably existed on the Earth prior to the transitional period, which was marked by a series of new geologic processes and led to a modern-style tectonics, involving plate tectonics and plume tectonics mechanisms, by 2 Ga. The transitional period was likely to be initiated at about 3.4 Ga, with the segregation of outer and inner cores, which terminated by 3.1 Ga. Other rocks series (calc-alkaline volcanic and intrusive) rather than TTGs were produced at that time. Beginning from 3.4–3.3 Ga, mineral deposits became more diverse; noble and siderophile metal occurrences were predominant among ore deposits. Carbonatites, hosting rare-metal mineralization, could have formed only by 2.0 Ga. From 3.1 to 2.7 Ga, there was a period of “small-plate” tectonics and first subduction and spreading processes, which resulted in the first supercontinent by 2.7 Ga. Its amalgamation indicates the start of superplume–supercontinent cycles. Between 2.7 and 2.0 Ga, the D″ layer formed at the core–mantle interface. It became a kind of thermal regulator for the ascending already tholeiitic mantle plume magmas. All deep-seated layers of the Earth and large low-velocity shear provinces, called mantle hot fields, partially melted enriched EM-I and EM-II mantles, and the depleted recent asthenosphere mantle, which is parental for midocean-ridge basalts, were finally generated by 2 Ga. Therefore, an interaction of all Earth’s layers began from that time." @default.
- W2904301341 created "2018-12-22" @default.
- W2904301341 creator A5015372802 @default.
- W2904301341 creator A5033441513 @default.
- W2904301341 creator A5056128690 @default.
- W2904301341 creator A5080489029 @default.
- W2904301341 date "2018-12-01" @default.
- W2904301341 modified "2023-10-16" @default.
- W2904301341 title "Magmatism and metallogeny of the Early Earth as a reflection of its geologic evolution" @default.
- W2904301341 cites W1492957437 @default.
- W2904301341 cites W1623611392 @default.
- W2904301341 cites W1968373656 @default.
- W2904301341 cites W1969791583 @default.
- W2904301341 cites W1972542296 @default.
- W2904301341 cites W1975136873 @default.
- W2904301341 cites W1988289549 @default.
- W2904301341 cites W2005925547 @default.
- W2904301341 cites W2010432538 @default.
- W2904301341 cites W2013451364 @default.
- W2904301341 cites W2014946463 @default.
- W2904301341 cites W2015174832 @default.
- W2904301341 cites W2023881106 @default.
- W2904301341 cites W2027789820 @default.
- W2904301341 cites W2039480109 @default.
- W2904301341 cites W2053767451 @default.
- W2904301341 cites W2058195627 @default.
- W2904301341 cites W2063347551 @default.
- W2904301341 cites W2071608007 @default.
- W2904301341 cites W2073127548 @default.
- W2904301341 cites W2083654371 @default.
- W2904301341 cites W2088454958 @default.
- W2904301341 cites W2091657802 @default.
- W2904301341 cites W2095151634 @default.
- W2904301341 cites W2116885418 @default.
- W2904301341 cites W2118567445 @default.
- W2904301341 cites W2139279578 @default.
- W2904301341 cites W2155672073 @default.
- W2904301341 cites W2170339782 @default.
- W2904301341 cites W2254490240 @default.
- W2904301341 cites W2320252086 @default.
- W2904301341 cites W2336281869 @default.
- W2904301341 cites W2398112667 @default.
- W2904301341 cites W2515064135 @default.
- W2904301341 cites W2547562384 @default.
- W2904301341 cites W2553355161 @default.
- W2904301341 cites W2587489851 @default.
- W2904301341 cites W2587612076 @default.
- W2904301341 cites W2587710731 @default.
- W2904301341 cites W3007318745 @default.
- W2904301341 cites W805928198 @default.
- W2904301341 cites W930896910 @default.
- W2904301341 doi "https://doi.org/10.1016/j.rgg.2018.12.001" @default.
- W2904301341 hasPublicationYear "2018" @default.
- W2904301341 type Work @default.
- W2904301341 sameAs 2904301341 @default.
- W2904301341 citedByCount "4" @default.
- W2904301341 countsByYear W29043013412019 @default.
- W2904301341 countsByYear W29043013412020 @default.
- W2904301341 countsByYear W29043013412021 @default.
- W2904301341 crossrefType "journal-article" @default.
- W2904301341 hasAuthorship W2904301341A5015372802 @default.
- W2904301341 hasAuthorship W2904301341A5033441513 @default.
- W2904301341 hasAuthorship W2904301341A5056128690 @default.
- W2904301341 hasAuthorship W2904301341A5080489029 @default.
- W2904301341 hasConcept C119477230 @default.
- W2904301341 hasConcept C121332964 @default.
- W2904301341 hasConcept C127313418 @default.
- W2904301341 hasConcept C147894010 @default.
- W2904301341 hasConcept C149347711 @default.
- W2904301341 hasConcept C151730666 @default.
- W2904301341 hasConcept C162973429 @default.
- W2904301341 hasConcept C16942324 @default.
- W2904301341 hasConcept C17409809 @default.
- W2904301341 hasConcept C190799397 @default.
- W2904301341 hasConcept C1965285 @default.
- W2904301341 hasConcept C2776698055 @default.
- W2904301341 hasConcept C2776744078 @default.
- W2904301341 hasConcept C37523158 @default.
- W2904301341 hasConcept C58097730 @default.
- W2904301341 hasConcept C67236022 @default.
- W2904301341 hasConcept C68246699 @default.
- W2904301341 hasConcept C77928131 @default.
- W2904301341 hasConcept C87355193 @default.
- W2904301341 hasConceptScore W2904301341C119477230 @default.
- W2904301341 hasConceptScore W2904301341C121332964 @default.
- W2904301341 hasConceptScore W2904301341C127313418 @default.
- W2904301341 hasConceptScore W2904301341C147894010 @default.
- W2904301341 hasConceptScore W2904301341C149347711 @default.
- W2904301341 hasConceptScore W2904301341C151730666 @default.
- W2904301341 hasConceptScore W2904301341C162973429 @default.
- W2904301341 hasConceptScore W2904301341C16942324 @default.
- W2904301341 hasConceptScore W2904301341C17409809 @default.
- W2904301341 hasConceptScore W2904301341C190799397 @default.
- W2904301341 hasConceptScore W2904301341C1965285 @default.
- W2904301341 hasConceptScore W2904301341C2776698055 @default.
- W2904301341 hasConceptScore W2904301341C2776744078 @default.
- W2904301341 hasConceptScore W2904301341C37523158 @default.
- W2904301341 hasConceptScore W2904301341C58097730 @default.