Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904303363> ?p ?o ?g. }
- W2904303363 endingPage "38" @default.
- W2904303363 startingPage "24" @default.
- W2904303363 abstract "In order to enable automated driving systems on the road, several key challenges need to be solved. One of these issues is real-time maneuver decision and trajectory planning. This paper introduces a general framework for maneuver and trajectory planning with model predictive methods. It discusses several representations of this framework in distinct complexity levels. In general, sophisticated models require to nonquadratic objective functions with nonlinear constraints, leading to increased computational complexities during calculation. Yet, oversimplified models can neither cope with vehicle dynamics in critical maneuvers nor do they represent complex traffic scenes with several maneuver options appropriately. A scheme to partition the trajectory space into homotopy regions is proposed. In each homotopy class, linearization about a trajectory from this class is applied. Demonstrations by simulation and with experimental vehicles show the capability of the proposed method in selecting optimal maneuvers and trajectories. This is even valid during extreme maneuvers, such as in last moment collision avoidance." @default.
- W2904303363 created "2018-12-22" @default.
- W2904303363 creator A5027164541 @default.
- W2904303363 creator A5070901859 @default.
- W2904303363 creator A5089224326 @default.
- W2904303363 creator A5091574711 @default.
- W2904303363 date "2019-03-01" @default.
- W2904303363 modified "2023-09-26" @default.
- W2904303363 title "Model Predictive Trajectory Planning for Automated Driving" @default.
- W2904303363 cites W1568248713 @default.
- W2904303363 cites W1807258779 @default.
- W2904303363 cites W1971086298 @default.
- W2904303363 cites W1971419089 @default.
- W2904303363 cites W1979317847 @default.
- W2904303363 cites W1994409711 @default.
- W2904303363 cites W2000790002 @default.
- W2904303363 cites W2009041800 @default.
- W2904303363 cites W2023136445 @default.
- W2904303363 cites W2032924574 @default.
- W2904303363 cites W2034132070 @default.
- W2904303363 cites W2036322673 @default.
- W2904303363 cites W2055201760 @default.
- W2904303363 cites W2070291139 @default.
- W2904303363 cites W2077742477 @default.
- W2904303363 cites W2103052138 @default.
- W2904303363 cites W2103120971 @default.
- W2904303363 cites W2103639171 @default.
- W2904303363 cites W2131081159 @default.
- W2904303363 cites W2145772536 @default.
- W2904303363 cites W2148361676 @default.
- W2904303363 cites W2160959433 @default.
- W2904303363 cites W2295237948 @default.
- W2904303363 cites W2313274380 @default.
- W2904303363 cites W2517622066 @default.
- W2904303363 cites W2524886531 @default.
- W2904303363 cites W4230249278 @default.
- W2904303363 cites W4247934413 @default.
- W2904303363 cites W72049640 @default.
- W2904303363 doi "https://doi.org/10.1109/tiv.2018.2886683" @default.
- W2904303363 hasPublicationYear "2019" @default.
- W2904303363 type Work @default.
- W2904303363 sameAs 2904303363 @default.
- W2904303363 citedByCount "19" @default.
- W2904303363 countsByYear W29043033632020 @default.
- W2904303363 countsByYear W29043033632021 @default.
- W2904303363 countsByYear W29043033632022 @default.
- W2904303363 countsByYear W29043033632023 @default.
- W2904303363 crossrefType "journal-article" @default.
- W2904303363 hasAuthorship W2904303363A5027164541 @default.
- W2904303363 hasAuthorship W2904303363A5070901859 @default.
- W2904303363 hasAuthorship W2904303363A5089224326 @default.
- W2904303363 hasAuthorship W2904303363A5091574711 @default.
- W2904303363 hasConcept C11210021 @default.
- W2904303363 hasConcept C114614502 @default.
- W2904303363 hasConcept C121332964 @default.
- W2904303363 hasConcept C121704057 @default.
- W2904303363 hasConcept C126255220 @default.
- W2904303363 hasConcept C127413603 @default.
- W2904303363 hasConcept C1276947 @default.
- W2904303363 hasConcept C133731056 @default.
- W2904303363 hasConcept C13662910 @default.
- W2904303363 hasConcept C154945302 @default.
- W2904303363 hasConcept C158622935 @default.
- W2904303363 hasConcept C172205157 @default.
- W2904303363 hasConcept C173246807 @default.
- W2904303363 hasConcept C179254644 @default.
- W2904303363 hasConcept C202444582 @default.
- W2904303363 hasConcept C2775924081 @default.
- W2904303363 hasConcept C2780864053 @default.
- W2904303363 hasConcept C33923547 @default.
- W2904303363 hasConcept C38652104 @default.
- W2904303363 hasConcept C41008148 @default.
- W2904303363 hasConcept C42812 @default.
- W2904303363 hasConcept C47446073 @default.
- W2904303363 hasConcept C5961521 @default.
- W2904303363 hasConcept C62520636 @default.
- W2904303363 hasConcept C74650414 @default.
- W2904303363 hasConcept C91575142 @default.
- W2904303363 hasConceptScore W2904303363C11210021 @default.
- W2904303363 hasConceptScore W2904303363C114614502 @default.
- W2904303363 hasConceptScore W2904303363C121332964 @default.
- W2904303363 hasConceptScore W2904303363C121704057 @default.
- W2904303363 hasConceptScore W2904303363C126255220 @default.
- W2904303363 hasConceptScore W2904303363C127413603 @default.
- W2904303363 hasConceptScore W2904303363C1276947 @default.
- W2904303363 hasConceptScore W2904303363C133731056 @default.
- W2904303363 hasConceptScore W2904303363C13662910 @default.
- W2904303363 hasConceptScore W2904303363C154945302 @default.
- W2904303363 hasConceptScore W2904303363C158622935 @default.
- W2904303363 hasConceptScore W2904303363C172205157 @default.
- W2904303363 hasConceptScore W2904303363C173246807 @default.
- W2904303363 hasConceptScore W2904303363C179254644 @default.
- W2904303363 hasConceptScore W2904303363C202444582 @default.
- W2904303363 hasConceptScore W2904303363C2775924081 @default.
- W2904303363 hasConceptScore W2904303363C2780864053 @default.
- W2904303363 hasConceptScore W2904303363C33923547 @default.
- W2904303363 hasConceptScore W2904303363C38652104 @default.
- W2904303363 hasConceptScore W2904303363C41008148 @default.