Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904308980> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2904308980 abstract "Short-term load forecasting (STLF) is essential for stable and efficient power system operation. Recently, many papers have been published on application of STLF using artificial neural networks (ANNs). Input data selection, normalization method and the number of hidden neurons are very important factors in modeling ANNs. In order to improve the accuracy of STLF using ANNs, several input data selections and various input data normalization methods are analyzed. The past load, the past temperature and the temperature of the forecasting day are used as input data for STLF. In the case studies, the accuracy of forecasting in ANNs with various normalization methods and several input data selections are compared. Result of case studies show that the accuracy of STLF is good when using the maximum-minimum normalization and using the input data selection of recent two days." @default.
- W2904308980 created "2018-12-22" @default.
- W2904308980 creator A5031160520 @default.
- W2904308980 creator A5034345673 @default.
- W2904308980 creator A5043990559 @default.
- W2904308980 creator A5090287233 @default.
- W2904308980 date "2018-10-01" @default.
- W2904308980 modified "2023-10-10" @default.
- W2904308980 title "Analysis of Short-Term Load Forecasting Using Artificial Neural Network Algorithm According to Normalization and Selection of Input Data on Weekdays" @default.
- W2904308980 cites W1987938889 @default.
- W2904308980 cites W2292129691 @default.
- W2904308980 cites W2297311015 @default.
- W2904308980 cites W2340247464 @default.
- W2904308980 cites W2511713529 @default.
- W2904308980 cites W2810594326 @default.
- W2904308980 doi "https://doi.org/10.1109/appeec.2018.8566293" @default.
- W2904308980 hasPublicationYear "2018" @default.
- W2904308980 type Work @default.
- W2904308980 sameAs 2904308980 @default.
- W2904308980 citedByCount "8" @default.
- W2904308980 countsByYear W29043089802019 @default.
- W2904308980 countsByYear W29043089802020 @default.
- W2904308980 countsByYear W29043089802021 @default.
- W2904308980 countsByYear W29043089802022 @default.
- W2904308980 crossrefType "proceedings-article" @default.
- W2904308980 hasAuthorship W2904308980A5031160520 @default.
- W2904308980 hasAuthorship W2904308980A5034345673 @default.
- W2904308980 hasAuthorship W2904308980A5043990559 @default.
- W2904308980 hasAuthorship W2904308980A5090287233 @default.
- W2904308980 hasConcept C11413529 @default.
- W2904308980 hasConcept C119857082 @default.
- W2904308980 hasConcept C121332964 @default.
- W2904308980 hasConcept C124101348 @default.
- W2904308980 hasConcept C136886441 @default.
- W2904308980 hasConcept C144024400 @default.
- W2904308980 hasConcept C153180895 @default.
- W2904308980 hasConcept C154945302 @default.
- W2904308980 hasConcept C162984825 @default.
- W2904308980 hasConcept C19165224 @default.
- W2904308980 hasConcept C41008148 @default.
- W2904308980 hasConcept C50644808 @default.
- W2904308980 hasConcept C61797465 @default.
- W2904308980 hasConcept C62520636 @default.
- W2904308980 hasConcept C81917197 @default.
- W2904308980 hasConceptScore W2904308980C11413529 @default.
- W2904308980 hasConceptScore W2904308980C119857082 @default.
- W2904308980 hasConceptScore W2904308980C121332964 @default.
- W2904308980 hasConceptScore W2904308980C124101348 @default.
- W2904308980 hasConceptScore W2904308980C136886441 @default.
- W2904308980 hasConceptScore W2904308980C144024400 @default.
- W2904308980 hasConceptScore W2904308980C153180895 @default.
- W2904308980 hasConceptScore W2904308980C154945302 @default.
- W2904308980 hasConceptScore W2904308980C162984825 @default.
- W2904308980 hasConceptScore W2904308980C19165224 @default.
- W2904308980 hasConceptScore W2904308980C41008148 @default.
- W2904308980 hasConceptScore W2904308980C50644808 @default.
- W2904308980 hasConceptScore W2904308980C61797465 @default.
- W2904308980 hasConceptScore W2904308980C62520636 @default.
- W2904308980 hasConceptScore W2904308980C81917197 @default.
- W2904308980 hasLocation W29043089801 @default.
- W2904308980 hasOpenAccess W2904308980 @default.
- W2904308980 hasPrimaryLocation W29043089801 @default.
- W2904308980 hasRelatedWork W2000153057 @default.
- W2904308980 hasRelatedWork W2101641305 @default.
- W2904308980 hasRelatedWork W2113286112 @default.
- W2904308980 hasRelatedWork W2122350171 @default.
- W2904308980 hasRelatedWork W2145362441 @default.
- W2904308980 hasRelatedWork W2175373041 @default.
- W2904308980 hasRelatedWork W2582603276 @default.
- W2904308980 hasRelatedWork W3102910059 @default.
- W2904308980 hasRelatedWork W4312138714 @default.
- W2904308980 hasRelatedWork W4386281023 @default.
- W2904308980 isParatext "false" @default.
- W2904308980 isRetracted "false" @default.
- W2904308980 magId "2904308980" @default.
- W2904308980 workType "article" @default.