Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904327562> ?p ?o ?g. }
- W2904327562 abstract "In this study, mechanical and physical properties of hybrid composites were analyzed by using a data acquisition technique like artificial neural networks. Matlab software was used to examine the effects of test parameters on infiltration temperature and pressure. Bending strength, hardness and density of hybrid composite were affected in neural network training and test. Firstly, training set was prepared for the MMCs. In this set, three various training algorithms were used with artificial neural network. At the end of the each learning, the accuracy of the each training algorithm was checked by using test set. As a result, the predicted results which were closest to the experimental results were obtained with the Levenberg–Marquardt training algorithm for bending strength, hardness and density of hybrid composites. These trained values had an average error of 0.376%, 2.969% and 2.648% for bending strength, density and hardness values, respectively." @default.
- W2904327562 created "2018-12-22" @default.
- W2904327562 creator A5020409716 @default.
- W2904327562 date "2018-12-06" @default.
- W2904327562 modified "2023-10-14" @default.
- W2904327562 title "Modeling of the mechanical and physical properties of hybrid composites produced by gas pressure infiltration" @default.
- W2904327562 cites W1233188336 @default.
- W2904327562 cites W1806404418 @default.
- W2904327562 cites W1965229818 @default.
- W2904327562 cites W1973905995 @default.
- W2904327562 cites W1981600310 @default.
- W2904327562 cites W1987288348 @default.
- W2904327562 cites W1989633694 @default.
- W2904327562 cites W1997886869 @default.
- W2904327562 cites W2001531859 @default.
- W2904327562 cites W2002673896 @default.
- W2904327562 cites W2006790273 @default.
- W2904327562 cites W2009433418 @default.
- W2904327562 cites W2011975656 @default.
- W2904327562 cites W2016851920 @default.
- W2904327562 cites W2019481451 @default.
- W2904327562 cites W2022360684 @default.
- W2904327562 cites W2022539782 @default.
- W2904327562 cites W2023122984 @default.
- W2904327562 cites W2024163500 @default.
- W2904327562 cites W2025368471 @default.
- W2904327562 cites W2028148514 @default.
- W2904327562 cites W2046725832 @default.
- W2904327562 cites W2052253502 @default.
- W2904327562 cites W2053027007 @default.
- W2904327562 cites W2053043488 @default.
- W2904327562 cites W2053302034 @default.
- W2904327562 cites W2054455822 @default.
- W2904327562 cites W2056629974 @default.
- W2904327562 cites W2061215898 @default.
- W2904327562 cites W2065803958 @default.
- W2904327562 cites W2070207630 @default.
- W2904327562 cites W2071756174 @default.
- W2904327562 cites W2078669886 @default.
- W2904327562 cites W2079118143 @default.
- W2904327562 cites W2082037247 @default.
- W2904327562 cites W2084428555 @default.
- W2904327562 cites W2088649989 @default.
- W2904327562 cites W2126865282 @default.
- W2904327562 cites W2130783930 @default.
- W2904327562 cites W2137570620 @default.
- W2904327562 cites W2211591638 @default.
- W2904327562 cites W2300900634 @default.
- W2904327562 cites W2330514267 @default.
- W2904327562 cites W2472469283 @default.
- W2904327562 cites W2610986174 @default.
- W2904327562 cites W2738379777 @default.
- W2904327562 cites W2766462814 @default.
- W2904327562 cites W4249795831 @default.
- W2904327562 cites W4255323222 @default.
- W2904327562 doi "https://doi.org/10.1007/s40430-018-1518-5" @default.
- W2904327562 hasPublicationYear "2018" @default.
- W2904327562 type Work @default.
- W2904327562 sameAs 2904327562 @default.
- W2904327562 citedByCount "5" @default.
- W2904327562 countsByYear W29043275622019 @default.
- W2904327562 countsByYear W29043275622020 @default.
- W2904327562 countsByYear W29043275622022 @default.
- W2904327562 countsByYear W29043275622023 @default.
- W2904327562 crossrefType "journal-article" @default.
- W2904327562 hasAuthorship W2904327562A5020409716 @default.
- W2904327562 hasBestOaLocation W29043275621 @default.
- W2904327562 hasConcept C104779481 @default.
- W2904327562 hasConcept C111919701 @default.
- W2904327562 hasConcept C119857082 @default.
- W2904327562 hasConcept C153400128 @default.
- W2904327562 hasConcept C154945302 @default.
- W2904327562 hasConcept C159985019 @default.
- W2904327562 hasConcept C16910744 @default.
- W2904327562 hasConcept C169903167 @default.
- W2904327562 hasConcept C178405089 @default.
- W2904327562 hasConcept C192562407 @default.
- W2904327562 hasConcept C199360897 @default.
- W2904327562 hasConcept C2780365114 @default.
- W2904327562 hasConcept C41008148 @default.
- W2904327562 hasConcept C50644808 @default.
- W2904327562 hasConcept C51632099 @default.
- W2904327562 hasConcept C87210426 @default.
- W2904327562 hasConceptScore W2904327562C104779481 @default.
- W2904327562 hasConceptScore W2904327562C111919701 @default.
- W2904327562 hasConceptScore W2904327562C119857082 @default.
- W2904327562 hasConceptScore W2904327562C153400128 @default.
- W2904327562 hasConceptScore W2904327562C154945302 @default.
- W2904327562 hasConceptScore W2904327562C159985019 @default.
- W2904327562 hasConceptScore W2904327562C16910744 @default.
- W2904327562 hasConceptScore W2904327562C169903167 @default.
- W2904327562 hasConceptScore W2904327562C178405089 @default.
- W2904327562 hasConceptScore W2904327562C192562407 @default.
- W2904327562 hasConceptScore W2904327562C199360897 @default.
- W2904327562 hasConceptScore W2904327562C2780365114 @default.
- W2904327562 hasConceptScore W2904327562C41008148 @default.
- W2904327562 hasConceptScore W2904327562C50644808 @default.
- W2904327562 hasConceptScore W2904327562C51632099 @default.
- W2904327562 hasConceptScore W2904327562C87210426 @default.
- W2904327562 hasIssue "1" @default.