Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904351664> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2904351664 endingPage "750" @default.
- W2904351664 startingPage "750" @default.
- W2904351664 abstract "The performance of many speech processing algorithms depends on modeling speech signals using appropriate probability distributions. Various distributions such as the Gamma distribution, Gaussian distribution, Generalized Gaussian distribution, Laplace distribution as well as multivariate Gaussian and Laplace distributions have been proposed in the literature to model different segment lengths of speech, typically below 200 ms in different domains. In this paper, we attempted to fit Laplace and Gaussian distributions to obtain a statistical model of speech short-time Fourier transform coefficients with high spectral resolution (segment length >500 ms) and low spectral resolution (segment length <10 ms). Distribution fitting of Laplace and Gaussian distributions was performed using maximum-likelihood estimation. It was found that speech short-time Fourier transform coefficients with high spectral resolution can be modeled using Laplace distribution. For low spectral resolution, neither the Laplace nor Gaussian distribution provided a good fit. Spectral domain modeling of speech with different depths of spectral resolution is useful in understanding the perceptual stability of hearing which is necessary for the design of digital hearing aids." @default.
- W2904351664 created "2018-12-22" @default.
- W2904351664 creator A5006423770 @default.
- W2904351664 creator A5010118872 @default.
- W2904351664 creator A5056900010 @default.
- W2904351664 creator A5089160266 @default.
- W2904351664 creator A5091902196 @default.
- W2904351664 date "2018-12-14" @default.
- W2904351664 modified "2023-09-27" @default.
- W2904351664 title "Probabilistic Modeling of Speech in Spectral Domain using Maximum Likelihood Estimation" @default.
- W2904351664 cites W1985090574 @default.
- W2904351664 cites W2000916836 @default.
- W2904351664 cites W2001725612 @default.
- W2904351664 cites W2025124222 @default.
- W2904351664 cites W2029015673 @default.
- W2904351664 cites W2071245802 @default.
- W2904351664 cites W2081074144 @default.
- W2904351664 cites W2082487636 @default.
- W2904351664 cites W2097714988 @default.
- W2904351664 cites W2097889020 @default.
- W2904351664 cites W2100456298 @default.
- W2904351664 cites W2103636088 @default.
- W2904351664 cites W2112854909 @default.
- W2904351664 cites W2115008841 @default.
- W2904351664 cites W2129901640 @default.
- W2904351664 cites W2133867310 @default.
- W2904351664 cites W2153447968 @default.
- W2904351664 cites W2162520685 @default.
- W2904351664 cites W2256769403 @default.
- W2904351664 cites W4250648261 @default.
- W2904351664 doi "https://doi.org/10.3390/sym10120750" @default.
- W2904351664 hasPublicationYear "2018" @default.
- W2904351664 type Work @default.
- W2904351664 sameAs 2904351664 @default.
- W2904351664 citedByCount "9" @default.
- W2904351664 countsByYear W29043516642019 @default.
- W2904351664 countsByYear W29043516642020 @default.
- W2904351664 countsByYear W29043516642021 @default.
- W2904351664 countsByYear W29043516642022 @default.
- W2904351664 countsByYear W29043516642023 @default.
- W2904351664 crossrefType "journal-article" @default.
- W2904351664 hasAuthorship W2904351664A5006423770 @default.
- W2904351664 hasAuthorship W2904351664A5010118872 @default.
- W2904351664 hasAuthorship W2904351664A5056900010 @default.
- W2904351664 hasAuthorship W2904351664A5089160266 @default.
- W2904351664 hasAuthorship W2904351664A5091902196 @default.
- W2904351664 hasBestOaLocation W29043516641 @default.
- W2904351664 hasConcept C102519508 @default.
- W2904351664 hasConcept C105795698 @default.
- W2904351664 hasConcept C121332964 @default.
- W2904351664 hasConcept C134306372 @default.
- W2904351664 hasConcept C149717495 @default.
- W2904351664 hasConcept C163716315 @default.
- W2904351664 hasConcept C166550679 @default.
- W2904351664 hasConcept C183057437 @default.
- W2904351664 hasConcept C19118579 @default.
- W2904351664 hasConcept C30049272 @default.
- W2904351664 hasConcept C33923547 @default.
- W2904351664 hasConcept C62520636 @default.
- W2904351664 hasConcept C97937538 @default.
- W2904351664 hasConceptScore W2904351664C102519508 @default.
- W2904351664 hasConceptScore W2904351664C105795698 @default.
- W2904351664 hasConceptScore W2904351664C121332964 @default.
- W2904351664 hasConceptScore W2904351664C134306372 @default.
- W2904351664 hasConceptScore W2904351664C149717495 @default.
- W2904351664 hasConceptScore W2904351664C163716315 @default.
- W2904351664 hasConceptScore W2904351664C166550679 @default.
- W2904351664 hasConceptScore W2904351664C183057437 @default.
- W2904351664 hasConceptScore W2904351664C19118579 @default.
- W2904351664 hasConceptScore W2904351664C30049272 @default.
- W2904351664 hasConceptScore W2904351664C33923547 @default.
- W2904351664 hasConceptScore W2904351664C62520636 @default.
- W2904351664 hasConceptScore W2904351664C97937538 @default.
- W2904351664 hasIssue "12" @default.
- W2904351664 hasLocation W29043516641 @default.
- W2904351664 hasLocation W29043516642 @default.
- W2904351664 hasOpenAccess W2904351664 @default.
- W2904351664 hasPrimaryLocation W29043516641 @default.
- W2904351664 hasRelatedWork W1968865206 @default.
- W2904351664 hasRelatedWork W2067712825 @default.
- W2904351664 hasRelatedWork W2073199034 @default.
- W2904351664 hasRelatedWork W2079291356 @default.
- W2904351664 hasRelatedWork W2894290360 @default.
- W2904351664 hasRelatedWork W2904351664 @default.
- W2904351664 hasRelatedWork W3042311615 @default.
- W2904351664 hasRelatedWork W3123269499 @default.
- W2904351664 hasRelatedWork W4210364599 @default.
- W2904351664 hasRelatedWork W4233113753 @default.
- W2904351664 hasVolume "10" @default.
- W2904351664 isParatext "false" @default.
- W2904351664 isRetracted "false" @default.
- W2904351664 magId "2904351664" @default.
- W2904351664 workType "article" @default.