Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904355132> ?p ?o ?g. }
- W2904355132 endingPage "538" @default.
- W2904355132 startingPage "528" @default.
- W2904355132 abstract "In water, the velocity of sound is a function of temperature, pressure, and salinity. The sound velocity in the ocean varies with depth and estimation of the sound velocity profile is interesting in its right for environmental monitoring. The sound velocity profile is required for sound navigation and ranging signal processing algorithms such as MUSIC. Also, the localisation of sensor nodes in an underwater sensor network requires a good estimate of the velocity profile. This study proposes an algorithm that calculates the sound velocity profile of ocean water using time of flight measurements between anchor nodes. The velocity profile is estimated in the discrete cosine transform domain to reduce the complexity of the algorithm, using two well-known meta-heuristic algorithms namely artificial bee colony and firefly algorithms. The Ray tracing method is used to improve the accuracy of the velocity profile. The Cramer–Rao lower bound of the proposed scheme is also derived. The localisation of a target node is also performed using the estimated sound velocity profile." @default.
- W2904355132 created "2018-12-22" @default.
- W2904355132 creator A5000701905 @default.
- W2904355132 creator A5025856625 @default.
- W2904355132 creator A5067990419 @default.
- W2904355132 date "2019-03-01" @default.
- W2904355132 modified "2023-10-16" @default.
- W2904355132 title "Sound velocity profile estimation using ray tracing and nature inspired meta‐heuristic algorithms in underwater sensor networks" @default.
- W2904355132 cites W1976048205 @default.
- W2904355132 cites W1977546151 @default.
- W2904355132 cites W1989660295 @default.
- W2904355132 cites W1995323171 @default.
- W2904355132 cites W2003477769 @default.
- W2904355132 cites W2020126482 @default.
- W2904355132 cites W2025310083 @default.
- W2904355132 cites W2040359298 @default.
- W2904355132 cites W2041106285 @default.
- W2904355132 cites W2045548574 @default.
- W2904355132 cites W2055356179 @default.
- W2904355132 cites W2056954581 @default.
- W2904355132 cites W2060070111 @default.
- W2904355132 cites W2077017513 @default.
- W2904355132 cites W2089621297 @default.
- W2904355132 cites W2091581981 @default.
- W2904355132 cites W2095590702 @default.
- W2904355132 cites W2096493543 @default.
- W2904355132 cites W2102024355 @default.
- W2904355132 cites W2111051172 @default.
- W2904355132 cites W2114652055 @default.
- W2904355132 cites W2127149139 @default.
- W2904355132 cites W2128912656 @default.
- W2904355132 cites W2135829090 @default.
- W2904355132 cites W2142078389 @default.
- W2904355132 cites W2143560894 @default.
- W2904355132 cites W2144317842 @default.
- W2904355132 cites W2144958230 @default.
- W2904355132 cites W2146446044 @default.
- W2904355132 cites W2149472588 @default.
- W2904355132 cites W2153733832 @default.
- W2904355132 cites W2157152310 @default.
- W2904355132 cites W2157379615 @default.
- W2904355132 cites W2167582408 @default.
- W2904355132 cites W2171074980 @default.
- W2904355132 cites W2213742543 @default.
- W2904355132 cites W2239705293 @default.
- W2904355132 cites W2315095502 @default.
- W2904355132 cites W2315214198 @default.
- W2904355132 cites W2330581381 @default.
- W2904355132 cites W2507765437 @default.
- W2904355132 cites W2543284995 @default.
- W2904355132 cites W2556483049 @default.
- W2904355132 cites W2597566347 @default.
- W2904355132 cites W2612782412 @default.
- W2904355132 cites W2653542547 @default.
- W2904355132 cites W2752904100 @default.
- W2904355132 cites W2765598926 @default.
- W2904355132 cites W2790186416 @default.
- W2904355132 cites W2791597214 @default.
- W2904355132 cites W2802749612 @default.
- W2904355132 cites W2912808862 @default.
- W2904355132 doi "https://doi.org/10.1049/iet-com.2018.5106" @default.
- W2904355132 hasPublicationYear "2019" @default.
- W2904355132 type Work @default.
- W2904355132 sameAs 2904355132 @default.
- W2904355132 citedByCount "6" @default.
- W2904355132 countsByYear W29043551322020 @default.
- W2904355132 countsByYear W29043551322021 @default.
- W2904355132 countsByYear W29043551322022 @default.
- W2904355132 crossrefType "journal-article" @default.
- W2904355132 hasAuthorship W2904355132A5000701905 @default.
- W2904355132 hasAuthorship W2904355132A5025856625 @default.
- W2904355132 hasAuthorship W2904355132A5067990419 @default.
- W2904355132 hasConcept C111368507 @default.
- W2904355132 hasConcept C11413529 @default.
- W2904355132 hasConcept C115051666 @default.
- W2904355132 hasConcept C121332964 @default.
- W2904355132 hasConcept C127313418 @default.
- W2904355132 hasConcept C129513315 @default.
- W2904355132 hasConcept C154982244 @default.
- W2904355132 hasConcept C199360897 @default.
- W2904355132 hasConcept C203718221 @default.
- W2904355132 hasConcept C23715911 @default.
- W2904355132 hasConcept C24890656 @default.
- W2904355132 hasConcept C2779843651 @default.
- W2904355132 hasConcept C41008148 @default.
- W2904355132 hasConcept C76155785 @default.
- W2904355132 hasConcept C85617194 @default.
- W2904355132 hasConcept C98083399 @default.
- W2904355132 hasConceptScore W2904355132C111368507 @default.
- W2904355132 hasConceptScore W2904355132C11413529 @default.
- W2904355132 hasConceptScore W2904355132C115051666 @default.
- W2904355132 hasConceptScore W2904355132C121332964 @default.
- W2904355132 hasConceptScore W2904355132C127313418 @default.
- W2904355132 hasConceptScore W2904355132C129513315 @default.
- W2904355132 hasConceptScore W2904355132C154982244 @default.
- W2904355132 hasConceptScore W2904355132C199360897 @default.
- W2904355132 hasConceptScore W2904355132C203718221 @default.
- W2904355132 hasConceptScore W2904355132C23715911 @default.