Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904357295> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2904357295 abstract "Different types of artificial neural network models were explored by researchers in the past. However, it is not clear from the past literature as to which of these models is best suitable for predicting the travel time of a link. Therefore, the objective of this study is to research and select the best neural network model structure to predict travel time on selected links. It is achieved by developing and comparing two-layer feedforward neural network model (neural network fitting), nonlinear autoregressive with external inputs (NARX) model, and nonlinear autoregressive model (NAR). Two links on I-85 freeway were selected for this study. The historical travel time data for the year 2014 and 2015 were collected from a private data source. The travel time was aggregated at 15-minute intervals. The developed models were tested by considering the travel time data for the year 2016. The results obtained indicate that NARX model outperformed the other two models, while NAR model performed better than the traditional neural network model for the selected links and data used in this research." @default.
- W2904357295 created "2018-12-22" @default.
- W2904357295 creator A5002716612 @default.
- W2904357295 creator A5038691409 @default.
- W2904357295 date "2018-11-01" @default.
- W2904357295 modified "2023-09-26" @default.
- W2904357295 title "Link-level Travel Time Prediction Using Artificial Neural Network Models" @default.
- W2904357295 cites W1577395830 @default.
- W2904357295 cites W1586335931 @default.
- W2904357295 cites W1971757341 @default.
- W2904357295 cites W1984328578 @default.
- W2904357295 cites W1991694886 @default.
- W2904357295 cites W2008483594 @default.
- W2904357295 cites W2069929199 @default.
- W2904357295 cites W2084149256 @default.
- W2904357295 cites W2086482048 @default.
- W2904357295 cites W2101331319 @default.
- W2904357295 cites W2103452139 @default.
- W2904357295 cites W2104554956 @default.
- W2904357295 cites W2117284672 @default.
- W2904357295 cites W2150355610 @default.
- W2904357295 cites W2155482699 @default.
- W2904357295 cites W2168332608 @default.
- W2904357295 cites W2298989526 @default.
- W2904357295 cites W2496724645 @default.
- W2904357295 cites W2533804622 @default.
- W2904357295 cites W2564356116 @default.
- W2904357295 cites W2579792847 @default.
- W2904357295 cites W2587736284 @default.
- W2904357295 cites W2623769582 @default.
- W2904357295 cites W2046584949 @default.
- W2904357295 doi "https://doi.org/10.1109/itsc.2018.8569731" @default.
- W2904357295 hasPublicationYear "2018" @default.
- W2904357295 type Work @default.
- W2904357295 sameAs 2904357295 @default.
- W2904357295 citedByCount "6" @default.
- W2904357295 countsByYear W29043572952020 @default.
- W2904357295 countsByYear W29043572952021 @default.
- W2904357295 countsByYear W29043572952022 @default.
- W2904357295 countsByYear W29043572952023 @default.
- W2904357295 crossrefType "proceedings-article" @default.
- W2904357295 hasAuthorship W2904357295A5002716612 @default.
- W2904357295 hasAuthorship W2904357295A5038691409 @default.
- W2904357295 hasConcept C105795698 @default.
- W2904357295 hasConcept C119857082 @default.
- W2904357295 hasConcept C121332964 @default.
- W2904357295 hasConcept C127413603 @default.
- W2904357295 hasConcept C133731056 @default.
- W2904357295 hasConcept C154945302 @default.
- W2904357295 hasConcept C158622935 @default.
- W2904357295 hasConcept C159877910 @default.
- W2904357295 hasConcept C175202392 @default.
- W2904357295 hasConcept C33923547 @default.
- W2904357295 hasConcept C38858127 @default.
- W2904357295 hasConcept C41008148 @default.
- W2904357295 hasConcept C42536954 @default.
- W2904357295 hasConcept C47702885 @default.
- W2904357295 hasConcept C50644808 @default.
- W2904357295 hasConcept C62520636 @default.
- W2904357295 hasConcept C67186912 @default.
- W2904357295 hasConcept C77088390 @default.
- W2904357295 hasConceptScore W2904357295C105795698 @default.
- W2904357295 hasConceptScore W2904357295C119857082 @default.
- W2904357295 hasConceptScore W2904357295C121332964 @default.
- W2904357295 hasConceptScore W2904357295C127413603 @default.
- W2904357295 hasConceptScore W2904357295C133731056 @default.
- W2904357295 hasConceptScore W2904357295C154945302 @default.
- W2904357295 hasConceptScore W2904357295C158622935 @default.
- W2904357295 hasConceptScore W2904357295C159877910 @default.
- W2904357295 hasConceptScore W2904357295C175202392 @default.
- W2904357295 hasConceptScore W2904357295C33923547 @default.
- W2904357295 hasConceptScore W2904357295C38858127 @default.
- W2904357295 hasConceptScore W2904357295C41008148 @default.
- W2904357295 hasConceptScore W2904357295C42536954 @default.
- W2904357295 hasConceptScore W2904357295C47702885 @default.
- W2904357295 hasConceptScore W2904357295C50644808 @default.
- W2904357295 hasConceptScore W2904357295C62520636 @default.
- W2904357295 hasConceptScore W2904357295C67186912 @default.
- W2904357295 hasConceptScore W2904357295C77088390 @default.
- W2904357295 hasLocation W29043572951 @default.
- W2904357295 hasOpenAccess W2904357295 @default.
- W2904357295 hasPrimaryLocation W29043572951 @default.
- W2904357295 hasRelatedWork W1989991046 @default.
- W2904357295 hasRelatedWork W2018019799 @default.
- W2904357295 hasRelatedWork W2386387936 @default.
- W2904357295 hasRelatedWork W288021687 @default.
- W2904357295 hasRelatedWork W2899352396 @default.
- W2904357295 hasRelatedWork W2989022659 @default.
- W2904357295 hasRelatedWork W3107474891 @default.
- W2904357295 hasRelatedWork W3152493410 @default.
- W2904357295 hasRelatedWork W1629725936 @default.
- W2904357295 hasRelatedWork W2802349271 @default.
- W2904357295 isParatext "false" @default.
- W2904357295 isRetracted "false" @default.
- W2904357295 magId "2904357295" @default.
- W2904357295 workType "article" @default.