Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904359042> ?p ?o ?g. }
- W2904359042 endingPage "3153" @default.
- W2904359042 startingPage "3144" @default.
- W2904359042 abstract "Infrared photodetectors are essential to many applications, including surveillance, communications, process monitoring, and biological imaging. The short-wave infrared (SWIR) spectral region (λ = 1-3 μm) is particularly powerful for health monitoring and medical diagnostics because biological tissues show low absorbance and minimal SWIR autofluorescence, enabling greater penetration depth and improved resolution in comparison with visible light. However, current SWIR photodetection technologies are largely based on epitaxially grown inorganic semiconductors, which are costly, require complex processing, and impose cooling requirements incompatible with wearable electronics. Solution-processable semiconductors are being developed for infrared detectors to enable low-cost direct deposition and facilitate monolithic integration and resolution not achievable using current technologies. In particular, organic semiconductors offer numerous advantages, including large-area and conformal coverage, temperature insensitivity, and biocompatibility, for enabling ubiquitous SWIR optoelectronics. This Account introduces recent efforts to advance the spectral response of organic photodetectors into the SWIR. High-performance visible to near-infrared (NIR) organic photodetectors have been demonstrated by leveraging the wealth of knowledge from organic solar cell research in the past decade. On the other hand, organic semiconductors that absorb in the SWIR are just emerging, and only a few organic materials have been reported that exhibit photocurrent past 1 μm. In this Account, we survey novel SWIR molecules and polymers and discuss the main bottlenecks associated with charge recombination and trapping, which are more challenging to address in narrow-band-gap photodetectors in comparison with devices operating in the visible to NIR. As we call attention to discrepancies in the literature regarding performance metrics, we share our perspective on potential pitfalls that may lead to overestimated values, with particular attention to the detectivity (signal-to-noise ratio) and temporal characteristics, in order to ensure a fair comparison of device performance. As progress is made toward overcoming challenges associated with losses due to recombination and increasing noise at progressively narrower band gaps, the performance of organic SWIR photodetectors is steadily rising, with detectivity exceeding 1011 Jones, comparable to that of commercial germanium photodiodes. Organic SWIR photodetectors can be incorporated into wearable physiological monitors and SWIR spectroscopic imagers that enable compositional analysis. A wide range of potential applications include food and water quality monitoring, medical and biological studies, industrial process inspection, and environmental surveillance. There are exciting opportunities for low-cost organic SWIR technologies to be as widely deployable and affordable as today's ubiquitous cell phone cameras operating in the visible, which will serve as an empowering tool for users to discover information in the SWIR and inspire new use cases and applications." @default.
- W2904359042 created "2018-12-22" @default.
- W2904359042 creator A5001699694 @default.
- W2904359042 creator A5015759438 @default.
- W2904359042 creator A5043085531 @default.
- W2904359042 creator A5053357210 @default.
- W2904359042 creator A5074251294 @default.
- W2904359042 date "2018-12-06" @default.
- W2904359042 modified "2023-10-18" @default.
- W2904359042 title "Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors" @default.
- W2904359042 cites W1982898684 @default.
- W2904359042 cites W1991909212 @default.
- W2904359042 cites W1995651581 @default.
- W2904359042 cites W1996258924 @default.
- W2904359042 cites W1997237162 @default.
- W2904359042 cites W2014431534 @default.
- W2904359042 cites W2028032426 @default.
- W2904359042 cites W2043740089 @default.
- W2904359042 cites W2052351374 @default.
- W2904359042 cites W2059454166 @default.
- W2904359042 cites W2074428038 @default.
- W2904359042 cites W2077408936 @default.
- W2904359042 cites W2084279835 @default.
- W2904359042 cites W2089335743 @default.
- W2904359042 cites W2090895883 @default.
- W2904359042 cites W2090908091 @default.
- W2904359042 cites W2127446495 @default.
- W2904359042 cites W2136731886 @default.
- W2904359042 cites W2137658177 @default.
- W2904359042 cites W2151880044 @default.
- W2904359042 cites W2158453103 @default.
- W2904359042 cites W2169065164 @default.
- W2904359042 cites W2196573779 @default.
- W2904359042 cites W2292374408 @default.
- W2904359042 cites W2300256369 @default.
- W2904359042 cites W2334727397 @default.
- W2904359042 cites W2342804454 @default.
- W2904359042 cites W2486273330 @default.
- W2904359042 cites W2564348237 @default.
- W2904359042 cites W2580498825 @default.
- W2904359042 cites W2586058884 @default.
- W2904359042 cites W2593247569 @default.
- W2904359042 cites W2596968638 @default.
- W2904359042 cites W2603679970 @default.
- W2904359042 cites W2606733897 @default.
- W2904359042 cites W2725467102 @default.
- W2904359042 cites W2735416847 @default.
- W2904359042 cites W2784506527 @default.
- W2904359042 cites W2791545223 @default.
- W2904359042 cites W2794078085 @default.
- W2904359042 cites W2794239335 @default.
- W2904359042 cites W2794359120 @default.
- W2904359042 cites W2800151315 @default.
- W2904359042 cites W2801838095 @default.
- W2904359042 cites W2802088141 @default.
- W2904359042 cites W2805991087 @default.
- W2904359042 cites W2824171137 @default.
- W2904359042 cites W2884791077 @default.
- W2904359042 cites W2884829546 @default.
- W2904359042 cites W2891289553 @default.
- W2904359042 cites W2898378041 @default.
- W2904359042 doi "https://doi.org/10.1021/acs.accounts.8b00446" @default.
- W2904359042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30520307" @default.
- W2904359042 hasPublicationYear "2018" @default.
- W2904359042 type Work @default.
- W2904359042 sameAs 2904359042 @default.
- W2904359042 citedByCount "124" @default.
- W2904359042 countsByYear W29043590422019 @default.
- W2904359042 countsByYear W29043590422020 @default.
- W2904359042 countsByYear W29043590422021 @default.
- W2904359042 countsByYear W29043590422022 @default.
- W2904359042 countsByYear W29043590422023 @default.
- W2904359042 crossrefType "journal-article" @default.
- W2904359042 hasAuthorship W2904359042A5001699694 @default.
- W2904359042 hasAuthorship W2904359042A5015759438 @default.
- W2904359042 hasAuthorship W2904359042A5043085531 @default.
- W2904359042 hasAuthorship W2904359042A5053357210 @default.
- W2904359042 hasAuthorship W2904359042A5074251294 @default.
- W2904359042 hasBestOaLocation W29043590422 @default.
- W2904359042 hasConcept C108225325 @default.
- W2904359042 hasConcept C120665830 @default.
- W2904359042 hasConcept C121332964 @default.
- W2904359042 hasConcept C138331895 @default.
- W2904359042 hasConcept C147789679 @default.
- W2904359042 hasConcept C158355884 @default.
- W2904359042 hasConcept C171250308 @default.
- W2904359042 hasConcept C185592680 @default.
- W2904359042 hasConcept C192562407 @default.
- W2904359042 hasConcept C23125352 @default.
- W2904359042 hasConcept C2779845233 @default.
- W2904359042 hasConcept C49040817 @default.
- W2904359042 hasConcept C751236 @default.
- W2904359042 hasConcept C85604662 @default.
- W2904359042 hasConcept C94003879 @default.
- W2904359042 hasConceptScore W2904359042C108225325 @default.
- W2904359042 hasConceptScore W2904359042C120665830 @default.
- W2904359042 hasConceptScore W2904359042C121332964 @default.
- W2904359042 hasConceptScore W2904359042C138331895 @default.