Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904361907> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W2904361907 abstract "In Chapter 3, we explored a DL use case for regression. We explored the entire problem-solving approach with a business-forward strategy. We leveraged all our learning from Chapters 1 and 2 in foundational DL and the Keras framework to develop DNNs for a regression use case. In this chapter, we will take our learning one step further and design a network for a classification use case. The approach overall remains the same, but there are a few nuances we need to keep in mind while solving a classification use case. Moreover, we will take our learning in this chapter one step ahead with extensive DNN architectures. Let’s get started." @default.
- W2904361907 created "2018-12-22" @default.
- W2904361907 creator A5078146900 @default.
- W2904361907 date "2018-12-07" @default.
- W2904361907 modified "2023-10-16" @default.
- W2904361907 title "Deep Neural Networks for Supervised Learning: Classification" @default.
- W2904361907 doi "https://doi.org/10.1007/978-1-4842-4240-7_4" @default.
- W2904361907 hasPublicationYear "2018" @default.
- W2904361907 type Work @default.
- W2904361907 sameAs 2904361907 @default.
- W2904361907 citedByCount "0" @default.
- W2904361907 crossrefType "book-chapter" @default.
- W2904361907 hasAuthorship W2904361907A5078146900 @default.
- W2904361907 hasConcept C105795698 @default.
- W2904361907 hasConcept C108583219 @default.
- W2904361907 hasConcept C119857082 @default.
- W2904361907 hasConcept C136389625 @default.
- W2904361907 hasConcept C154945302 @default.
- W2904361907 hasConcept C2984842247 @default.
- W2904361907 hasConcept C33923547 @default.
- W2904361907 hasConcept C41008148 @default.
- W2904361907 hasConcept C50644808 @default.
- W2904361907 hasConcept C83546350 @default.
- W2904361907 hasConceptScore W2904361907C105795698 @default.
- W2904361907 hasConceptScore W2904361907C108583219 @default.
- W2904361907 hasConceptScore W2904361907C119857082 @default.
- W2904361907 hasConceptScore W2904361907C136389625 @default.
- W2904361907 hasConceptScore W2904361907C154945302 @default.
- W2904361907 hasConceptScore W2904361907C2984842247 @default.
- W2904361907 hasConceptScore W2904361907C33923547 @default.
- W2904361907 hasConceptScore W2904361907C41008148 @default.
- W2904361907 hasConceptScore W2904361907C50644808 @default.
- W2904361907 hasConceptScore W2904361907C83546350 @default.
- W2904361907 hasLocation W29043619071 @default.
- W2904361907 hasOpenAccess W2904361907 @default.
- W2904361907 hasPrimaryLocation W29043619071 @default.
- W2904361907 hasRelatedWork W2604802223 @default.
- W2904361907 hasRelatedWork W2737112412 @default.
- W2904361907 hasRelatedWork W2791691546 @default.
- W2904361907 hasRelatedWork W2950066684 @default.
- W2904361907 hasRelatedWork W2978367927 @default.
- W2904361907 hasRelatedWork W3034749675 @default.
- W2904361907 hasRelatedWork W3124304076 @default.
- W2904361907 hasRelatedWork W3174422331 @default.
- W2904361907 hasRelatedWork W3179488938 @default.
- W2904361907 hasRelatedWork W2970388140 @default.
- W2904361907 isParatext "false" @default.
- W2904361907 isRetracted "false" @default.
- W2904361907 magId "2904361907" @default.
- W2904361907 workType "book-chapter" @default.