Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904362488> ?p ?o ?g. }
- W2904362488 abstract "With the advent of online services, the Internet has become extremely busy and demanding faster access. The increased dependency on the Internet obliges Internet service providers to make it reliable and secure. In this regard, researchers are tirelessly working on a number of technologies in order to ensure the continued viability of the Internet. Intrusion detection is one of the fields that enables secure operation of the Internet. An intrusion detection system (IDS) attempts to discover malicious activities in a network. However, with the increasing network throughput, IDSs should be able to analyse high volumes of traffic in real-time. Flow-based analysis is one of the methods capable of handling high-volume traffic. This method reduces the input traffic of IDSs because it analyses only packet headers. Flow-based anomaly detection can increase the reliability of the Internet, provided this method is functional at an early stage and complemented by packet-based IDSs at later stages.Employing artificial intelligence (AI) methods in IDSs provides the capability to detect attacks with better accuracy. Compared with typical IDSs, AI-based systems are more inclined towards detecting unknown attacks. This thesis proposes an artificial neural network (ANN) based flow anomaly detector optimised with metaheuristic algorithms. The proposed method is evaluated using a number of flow-based datasets generated. An ANN-based flow anomaly detection enables a high detection rate; hence, this thesis investigates this system more thoroughly. The ANN-based system is a supervised method which needs labelled datasets; however, labelling of a large amount of data found in high-speed networks is difficult. Semi-supervised methods are the combination of supervised and unsupervised methods, which can work with both labelled and unlabelled data. A semi-supervised method can provide a high detection rate even when there is a small proportion of labelled data; therefore, the application of this method in flow-based anomaly detection is considered." @default.
- W2904362488 created "2018-12-22" @default.
- W2904362488 creator A5080148923 @default.
- W2904362488 date "2016-01-01" @default.
- W2904362488 modified "2023-09-26" @default.
- W2904362488 title "Flow-based Anomaly Detection in High-Speed Networks" @default.
- W2904362488 cites W1479807131 @default.
- W2904362488 cites W1481915258 @default.
- W2904362488 cites W1493009343 @default.
- W2904362488 cites W1516506771 @default.
- W2904362488 cites W1527992010 @default.
- W2904362488 cites W1536288781 @default.
- W2904362488 cites W1537426656 @default.
- W2904362488 cites W1570845098 @default.
- W2904362488 cites W1584974409 @default.
- W2904362488 cites W1590210340 @default.
- W2904362488 cites W1802290782 @default.
- W2904362488 cites W1838783946 @default.
- W2904362488 cites W1891233321 @default.
- W2904362488 cites W1912123407 @default.
- W2904362488 cites W1932571505 @default.
- W2904362488 cites W1967681554 @default.
- W2904362488 cites W1973515534 @default.
- W2904362488 cites W1975196881 @default.
- W2904362488 cites W1977113083 @default.
- W2904362488 cites W1977141583 @default.
- W2904362488 cites W1980062751 @default.
- W2904362488 cites W1988610730 @default.
- W2904362488 cites W1992239190 @default.
- W2904362488 cites W1994847875 @default.
- W2904362488 cites W1994864447 @default.
- W2904362488 cites W1994894547 @default.
- W2904362488 cites W1996639403 @default.
- W2904362488 cites W2001396694 @default.
- W2904362488 cites W2012844989 @default.
- W2904362488 cites W2018038545 @default.
- W2904362488 cites W2027689065 @default.
- W2904362488 cites W2031163547 @default.
- W2904362488 cites W2033251161 @default.
- W2904362488 cites W2050546928 @default.
- W2904362488 cites W2059342086 @default.
- W2904362488 cites W2063302966 @default.
- W2904362488 cites W2069685920 @default.
- W2904362488 cites W2072955302 @default.
- W2904362488 cites W2074910460 @default.
- W2904362488 cites W2075932300 @default.
- W2904362488 cites W2096474000 @default.
- W2904362488 cites W2096495947 @default.
- W2904362488 cites W2097089247 @default.
- W2904362488 cites W2097662376 @default.
- W2904362488 cites W2097980166 @default.
- W2904362488 cites W2104893874 @default.
- W2904362488 cites W2104936918 @default.
- W2904362488 cites W2107008379 @default.
- W2904362488 cites W2107968230 @default.
- W2904362488 cites W2109936159 @default.
- W2904362488 cites W2114060962 @default.
- W2904362488 cites W2117747231 @default.
- W2904362488 cites W2124543982 @default.
- W2904362488 cites W2127455097 @default.
- W2904362488 cites W2132166479 @default.
- W2904362488 cites W2133499772 @default.
- W2904362488 cites W2134539183 @default.
- W2904362488 cites W2134684274 @default.
- W2904362488 cites W2139669429 @default.
- W2904362488 cites W2142114717 @default.
- W2904362488 cites W2142720090 @default.
- W2904362488 cites W2142889610 @default.
- W2904362488 cites W2156909104 @default.
- W2904362488 cites W2160338239 @default.
- W2904362488 cites W2163950614 @default.
- W2904362488 cites W2164532265 @default.
- W2904362488 cites W2165032725 @default.
- W2904362488 cites W2166260449 @default.
- W2904362488 cites W2171331105 @default.
- W2904362488 cites W2190687780 @default.
- W2904362488 cites W2273662356 @default.
- W2904362488 cites W2277036336 @default.
- W2904362488 cites W2288766236 @default.
- W2904362488 cites W2294588635 @default.
- W2904362488 cites W2295597102 @default.
- W2904362488 cites W2324768929 @default.
- W2904362488 cites W2339635974 @default.
- W2904362488 cites W2343744938 @default.
- W2904362488 cites W2569506738 @default.
- W2904362488 cites W34688585 @default.
- W2904362488 cites W782506017 @default.
- W2904362488 cites W92894758 @default.
- W2904362488 cites W2105350355 @default.
- W2904362488 doi "https://doi.org/10.25904/1912/1145" @default.
- W2904362488 hasPublicationYear "2016" @default.
- W2904362488 type Work @default.
- W2904362488 sameAs 2904362488 @default.
- W2904362488 citedByCount "0" @default.
- W2904362488 crossrefType "dissertation" @default.
- W2904362488 hasAuthorship W2904362488A5080148923 @default.
- W2904362488 hasConcept C110875604 @default.
- W2904362488 hasConcept C121332964 @default.
- W2904362488 hasConcept C124101348 @default.
- W2904362488 hasConcept C136764020 @default.