Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904363148> ?p ?o ?g. }
- W2904363148 endingPage "1261" @default.
- W2904363148 startingPage "1250" @default.
- W2904363148 abstract "A numerical simulation of helical micro-fins is implemented in ANSYS Fluent 15. The model is scripted to automatically set up and execute given three input parameters: fin height, helix angle, and number of starts. The simulation results reasonably predict experimental pressure drop and heat transfer for multiple micro-fin geometries. A multi-objective parameter optimization is implemented based on the NSGA-II algorithm to estimate the optimal trade-off (Pareto front) between Nusselt number and friction factor of a micro-fin tube for 0.0006 < e/D < 0.045, 10 < Ns < 70, at Reynolds number of 49,013. The resulting Pareto front is analyzed and compared with several experimental data points. From the optimal results, a distinct difference in flow characteristics was identified between geometries above and below a helix angle of approximately 45°. How the Pareto front can be used to choose micro-fin geometries for different performance evaluation criterion scenarios is demonstrated. Optimal results from various existing correlations are also compared to the optimization results." @default.
- W2904363148 created "2018-12-22" @default.
- W2904363148 creator A5004049120 @default.
- W2904363148 creator A5008646450 @default.
- W2904363148 date "2019-04-01" @default.
- W2904363148 modified "2023-09-25" @default.
- W2904363148 title "Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II" @default.
- W2904363148 cites W1879469319 @default.
- W2904363148 cites W1964698566 @default.
- W2904363148 cites W1965193545 @default.
- W2904363148 cites W1966207010 @default.
- W2904363148 cites W1970644673 @default.
- W2904363148 cites W1972181579 @default.
- W2904363148 cites W1974097079 @default.
- W2904363148 cites W1974743649 @default.
- W2904363148 cites W1981488825 @default.
- W2904363148 cites W1982486019 @default.
- W2904363148 cites W1985225059 @default.
- W2904363148 cites W1990536516 @default.
- W2904363148 cites W1991000008 @default.
- W2904363148 cites W2005744767 @default.
- W2904363148 cites W2006872725 @default.
- W2904363148 cites W2009562230 @default.
- W2904363148 cites W2027014185 @default.
- W2904363148 cites W2032777079 @default.
- W2904363148 cites W2033712433 @default.
- W2904363148 cites W2038944167 @default.
- W2904363148 cites W2043347080 @default.
- W2904363148 cites W2046168236 @default.
- W2904363148 cites W2049513969 @default.
- W2904363148 cites W2051143945 @default.
- W2904363148 cites W2052310488 @default.
- W2904363148 cites W2062825668 @default.
- W2904363148 cites W2069542940 @default.
- W2904363148 cites W2071120153 @default.
- W2904363148 cites W2074952496 @default.
- W2904363148 cites W2076461701 @default.
- W2904363148 cites W2079588241 @default.
- W2904363148 cites W2086985882 @default.
- W2904363148 cites W2087051353 @default.
- W2904363148 cites W2089230846 @default.
- W2904363148 cites W2089355983 @default.
- W2904363148 cites W2126105956 @default.
- W2904363148 cites W2133361402 @default.
- W2904363148 cites W2133615529 @default.
- W2904363148 cites W2158216297 @default.
- W2904363148 cites W345782144 @default.
- W2904363148 cites W2048571083 @default.
- W2904363148 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.078" @default.
- W2904363148 hasPublicationYear "2019" @default.
- W2904363148 type Work @default.
- W2904363148 sameAs 2904363148 @default.
- W2904363148 citedByCount "27" @default.
- W2904363148 countsByYear W29043631482019 @default.
- W2904363148 countsByYear W29043631482020 @default.
- W2904363148 countsByYear W29043631482021 @default.
- W2904363148 countsByYear W29043631482022 @default.
- W2904363148 countsByYear W29043631482023 @default.
- W2904363148 crossrefType "journal-article" @default.
- W2904363148 hasAuthorship W2904363148A5004049120 @default.
- W2904363148 hasAuthorship W2904363148A5008646450 @default.
- W2904363148 hasBestOaLocation W29043631481 @default.
- W2904363148 hasConcept C114088122 @default.
- W2904363148 hasConcept C121332964 @default.
- W2904363148 hasConcept C126255220 @default.
- W2904363148 hasConcept C130230704 @default.
- W2904363148 hasConcept C159985019 @default.
- W2904363148 hasConcept C182748727 @default.
- W2904363148 hasConcept C192562407 @default.
- W2904363148 hasConcept C196558001 @default.
- W2904363148 hasConcept C2777989653 @default.
- W2904363148 hasConcept C33923547 @default.
- W2904363148 hasConcept C38349280 @default.
- W2904363148 hasConcept C41008148 @default.
- W2904363148 hasConcept C50517652 @default.
- W2904363148 hasConcept C57879066 @default.
- W2904363148 hasConcept C68781425 @default.
- W2904363148 hasConcept C91721477 @default.
- W2904363148 hasConceptScore W2904363148C114088122 @default.
- W2904363148 hasConceptScore W2904363148C121332964 @default.
- W2904363148 hasConceptScore W2904363148C126255220 @default.
- W2904363148 hasConceptScore W2904363148C130230704 @default.
- W2904363148 hasConceptScore W2904363148C159985019 @default.
- W2904363148 hasConceptScore W2904363148C182748727 @default.
- W2904363148 hasConceptScore W2904363148C192562407 @default.
- W2904363148 hasConceptScore W2904363148C196558001 @default.
- W2904363148 hasConceptScore W2904363148C2777989653 @default.
- W2904363148 hasConceptScore W2904363148C33923547 @default.
- W2904363148 hasConceptScore W2904363148C38349280 @default.
- W2904363148 hasConceptScore W2904363148C41008148 @default.
- W2904363148 hasConceptScore W2904363148C50517652 @default.
- W2904363148 hasConceptScore W2904363148C57879066 @default.
- W2904363148 hasConceptScore W2904363148C68781425 @default.
- W2904363148 hasConceptScore W2904363148C91721477 @default.
- W2904363148 hasLocation W29043631481 @default.
- W2904363148 hasLocation W29043631482 @default.
- W2904363148 hasOpenAccess W2904363148 @default.
- W2904363148 hasPrimaryLocation W29043631481 @default.