Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904365926> ?p ?o ?g. }
- W2904365926 abstract "Abstract Steam injection rate through life cycle optimization (e.g., the constant rate for a long period of time) could lead to the sub-optimal performance of a thermal heavy oil recovery process. On the other hand, finding the optimal steam injection strategy (policy) represents a major challenge due to the complex dynamic of the physical phenomenon, i.e., nonlinear, slow, high order, time-varying, and potentially highly heterogeneous reservoirs. To address this challenge, the problem can be formulated as an optimal control problem that has typically been solved using adjoint state optimization and a model-predictive control (MPC) strategy. In contrast, this work presents a reinforcement learning (RL) approach in which the mathematical model of the dynamic process (SAGD) is assumed unknown. An agent is trained to find the optimal policy only through continuous interactions with the environment (e.g., numerical reservoir simulation model). At each time step, the agent executes an action (e.g., increase steam injection rate), receives a reward (e.g., net present value) and observes the new state (e.g., pressure distribution) of the environment. During this interaction, an action-value function is approximated; this function will offer for a given state of the environment the action that will maximize total future reward. This process continues for multiple simulations (episodes) of the dynamic process until convergence is achieved. In this implementation, the state-action-reward-state-action (SARSA) online policy learning algorithm is employed in which the action-value function is continually estimated after every time step and further used to choose the optimal action. The environment consists of a reservoir simulation model built using data from a reservoir located in northern Alberta. The model consists of one well pair (one injector and one producer) and production horizon of 250 days (one episode) is considered. The state of the environment is defined as cumulative, oil and water production, and water injection and for each time step; three possible actions are considered, i.e., increase, decrease or no change of current steam injection rate; and the reward represents the net present value (NPV). Additionally, stochastic gradient descent is used to approximate the action-value function. Results show that the optimal steam injection policy obtained using RL implementation improves NPV by at least 30% with more than 60% lower computation cost." @default.
- W2904365926 created "2018-12-22" @default.
- W2904365926 creator A5012687207 @default.
- W2904365926 creator A5082432932 @default.
- W2904365926 date "2018-12-10" @default.
- W2904365926 modified "2023-10-14" @default.
- W2904365926 title "Optimization of Steam Injection for Heavy Oil Reservoirs Using Reinforcement Learning" @default.
- W2904365926 cites W1976733354 @default.
- W2904365926 cites W1982431965 @default.
- W2904365926 cites W1986570820 @default.
- W2904365926 cites W2003988272 @default.
- W2904365926 cites W2007802350 @default.
- W2904365926 cites W2016093729 @default.
- W2904365926 cites W2024687776 @default.
- W2904365926 cites W2025412950 @default.
- W2904365926 cites W2039868671 @default.
- W2904365926 cites W2040473283 @default.
- W2904365926 cites W2048374321 @default.
- W2904365926 cites W2051186637 @default.
- W2904365926 cites W2051554019 @default.
- W2904365926 cites W2055909731 @default.
- W2904365926 cites W2085482219 @default.
- W2904365926 cites W2103085926 @default.
- W2904365926 cites W2113116195 @default.
- W2904365926 cites W2124657875 @default.
- W2904365926 cites W2150166938 @default.
- W2904365926 cites W2151908411 @default.
- W2904365926 cites W2267990845 @default.
- W2904365926 cites W2328291735 @default.
- W2904365926 cites W2489616150 @default.
- W2904365926 cites W2494808947 @default.
- W2904365926 cites W2566497347 @default.
- W2904365926 cites W2605376157 @default.
- W2904365926 cites W2774214862 @default.
- W2904365926 cites W2888437999 @default.
- W2904365926 cites W4229798413 @default.
- W2904365926 cites W4237813249 @default.
- W2904365926 cites W4248454586 @default.
- W2904365926 doi "https://doi.org/10.2118/193769-ms" @default.
- W2904365926 hasPublicationYear "2018" @default.
- W2904365926 type Work @default.
- W2904365926 sameAs 2904365926 @default.
- W2904365926 citedByCount "14" @default.
- W2904365926 countsByYear W29043659262019 @default.
- W2904365926 countsByYear W29043659262020 @default.
- W2904365926 countsByYear W29043659262021 @default.
- W2904365926 countsByYear W29043659262022 @default.
- W2904365926 countsByYear W29043659262023 @default.
- W2904365926 crossrefType "proceedings-article" @default.
- W2904365926 hasAuthorship W2904365926A5012687207 @default.
- W2904365926 hasAuthorship W2904365926A5082432932 @default.
- W2904365926 hasConcept C111919701 @default.
- W2904365926 hasConcept C11413529 @default.
- W2904365926 hasConcept C121332964 @default.
- W2904365926 hasConcept C126255220 @default.
- W2904365926 hasConcept C127413603 @default.
- W2904365926 hasConcept C14036430 @default.
- W2904365926 hasConcept C14646407 @default.
- W2904365926 hasConcept C154945302 @default.
- W2904365926 hasConcept C162324750 @default.
- W2904365926 hasConcept C175234220 @default.
- W2904365926 hasConcept C199360897 @default.
- W2904365926 hasConcept C26517878 @default.
- W2904365926 hasConcept C2775924081 @default.
- W2904365926 hasConcept C2777027219 @default.
- W2904365926 hasConcept C2777303404 @default.
- W2904365926 hasConcept C2780791683 @default.
- W2904365926 hasConcept C33923547 @default.
- W2904365926 hasConcept C37404715 @default.
- W2904365926 hasConcept C38652104 @default.
- W2904365926 hasConcept C41008148 @default.
- W2904365926 hasConcept C47446073 @default.
- W2904365926 hasConcept C50522688 @default.
- W2904365926 hasConcept C57869625 @default.
- W2904365926 hasConcept C62520636 @default.
- W2904365926 hasConcept C78458016 @default.
- W2904365926 hasConcept C78762247 @default.
- W2904365926 hasConcept C86803240 @default.
- W2904365926 hasConcept C91575142 @default.
- W2904365926 hasConcept C97541855 @default.
- W2904365926 hasConcept C98045186 @default.
- W2904365926 hasConceptScore W2904365926C111919701 @default.
- W2904365926 hasConceptScore W2904365926C11413529 @default.
- W2904365926 hasConceptScore W2904365926C121332964 @default.
- W2904365926 hasConceptScore W2904365926C126255220 @default.
- W2904365926 hasConceptScore W2904365926C127413603 @default.
- W2904365926 hasConceptScore W2904365926C14036430 @default.
- W2904365926 hasConceptScore W2904365926C14646407 @default.
- W2904365926 hasConceptScore W2904365926C154945302 @default.
- W2904365926 hasConceptScore W2904365926C162324750 @default.
- W2904365926 hasConceptScore W2904365926C175234220 @default.
- W2904365926 hasConceptScore W2904365926C199360897 @default.
- W2904365926 hasConceptScore W2904365926C26517878 @default.
- W2904365926 hasConceptScore W2904365926C2775924081 @default.
- W2904365926 hasConceptScore W2904365926C2777027219 @default.
- W2904365926 hasConceptScore W2904365926C2777303404 @default.
- W2904365926 hasConceptScore W2904365926C2780791683 @default.
- W2904365926 hasConceptScore W2904365926C33923547 @default.
- W2904365926 hasConceptScore W2904365926C37404715 @default.
- W2904365926 hasConceptScore W2904365926C38652104 @default.