Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904368497> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2904368497 endingPage "17" @default.
- W2904368497 startingPage "17" @default.
- W2904368497 abstract "Software development effort estimation (SDEE) is a significant activity in project management and serves as the basis for project bidding, planning, staffing, resource allocation, scheduling, and cost estimation. The accuracy of SDEE techniques varies from project to project, which makes them rather unreliable. In this backdrop, we propose a foundation centered ensemble-based SDEE approach. The primary goal of this approach is to design an ensemble consisting of different machine learning methods for improving the prediction accuracy of SDEE. In recent times, several research results have been reported on machine learning based ensemble design, but extreme learning machine (ELM) and least square support vector regression (LSSVR) have not been used to develop an ensemble. We chose three machine learning techniques, namely ELM, LSSVR, and multilayer perceptron (MLP) as the base techniques to build an ensemble. We investigated the performance of a homogeneous ensemble design using a linear combination rule with standardized accuracy as a weight factor. The performance of the ensemble model is validated and compared with root mean square error (RMSE) based weighted average ensemble model with equivalent configuration. The experimental study was conducted using publicly available PROMISE repository test suite. We achieved promising results for SEET model compared to base learners and RMSE ensemble model." @default.
- W2904368497 created "2018-12-22" @default.
- W2904368497 creator A5035539513 @default.
- W2904368497 creator A5055826525 @default.
- W2904368497 date "2018-12-07" @default.
- W2904368497 modified "2023-09-30" @default.
- W2904368497 title "SEET" @default.
- W2904368497 cites W1605688901 @default.
- W2904368497 cites W1970660793 @default.
- W2904368497 cites W1978453247 @default.
- W2904368497 cites W1982160761 @default.
- W2904368497 cites W1993694224 @default.
- W2904368497 cites W2004141087 @default.
- W2904368497 cites W2009151039 @default.
- W2904368497 cites W2009407457 @default.
- W2904368497 cites W2011533104 @default.
- W2904368497 cites W2037557484 @default.
- W2904368497 cites W2037664399 @default.
- W2904368497 cites W2061082730 @default.
- W2904368497 cites W2070567333 @default.
- W2904368497 cites W2078619386 @default.
- W2904368497 cites W2097670073 @default.
- W2904368497 cites W2103296684 @default.
- W2904368497 cites W2104236502 @default.
- W2904368497 cites W2104615423 @default.
- W2904368497 cites W2111072639 @default.
- W2904368497 cites W2123279272 @default.
- W2904368497 cites W2124116645 @default.
- W2904368497 cites W2125791732 @default.
- W2904368497 cites W2131378644 @default.
- W2904368497 cites W2157177276 @default.
- W2904368497 cites W2567530267 @default.
- W2904368497 cites W2605932792 @default.
- W2904368497 cites W409166618 @default.
- W2904368497 cites W4212883601 @default.
- W2904368497 doi "https://doi.org/10.1145/3229783.3229805" @default.
- W2904368497 hasPublicationYear "2018" @default.
- W2904368497 type Work @default.
- W2904368497 sameAs 2904368497 @default.
- W2904368497 citedByCount "2" @default.
- W2904368497 countsByYear W29043684972020 @default.
- W2904368497 countsByYear W29043684972023 @default.
- W2904368497 crossrefType "journal-article" @default.
- W2904368497 hasAuthorship W2904368497A5035539513 @default.
- W2904368497 hasAuthorship W2904368497A5055826525 @default.
- W2904368497 hasConcept C105795698 @default.
- W2904368497 hasConcept C119857082 @default.
- W2904368497 hasConcept C119898033 @default.
- W2904368497 hasConcept C12267149 @default.
- W2904368497 hasConcept C124101348 @default.
- W2904368497 hasConcept C139945424 @default.
- W2904368497 hasConcept C154945302 @default.
- W2904368497 hasConcept C179717631 @default.
- W2904368497 hasConcept C33923547 @default.
- W2904368497 hasConcept C41008148 @default.
- W2904368497 hasConcept C45942800 @default.
- W2904368497 hasConcept C50644808 @default.
- W2904368497 hasConceptScore W2904368497C105795698 @default.
- W2904368497 hasConceptScore W2904368497C119857082 @default.
- W2904368497 hasConceptScore W2904368497C119898033 @default.
- W2904368497 hasConceptScore W2904368497C12267149 @default.
- W2904368497 hasConceptScore W2904368497C124101348 @default.
- W2904368497 hasConceptScore W2904368497C139945424 @default.
- W2904368497 hasConceptScore W2904368497C154945302 @default.
- W2904368497 hasConceptScore W2904368497C179717631 @default.
- W2904368497 hasConceptScore W2904368497C33923547 @default.
- W2904368497 hasConceptScore W2904368497C41008148 @default.
- W2904368497 hasConceptScore W2904368497C45942800 @default.
- W2904368497 hasConceptScore W2904368497C50644808 @default.
- W2904368497 hasIssue "3" @default.
- W2904368497 hasLocation W29043684971 @default.
- W2904368497 hasOpenAccess W2904368497 @default.
- W2904368497 hasPrimaryLocation W29043684971 @default.
- W2904368497 hasRelatedWork W2904368497 @default.
- W2904368497 hasRelatedWork W2979979539 @default.
- W2904368497 hasRelatedWork W3013699712 @default.
- W2904368497 hasRelatedWork W3136979370 @default.
- W2904368497 hasRelatedWork W3151529617 @default.
- W2904368497 hasRelatedWork W4281560664 @default.
- W2904368497 hasRelatedWork W4285741730 @default.
- W2904368497 hasRelatedWork W4292969247 @default.
- W2904368497 hasRelatedWork W4308112567 @default.
- W2904368497 hasRelatedWork W2766202071 @default.
- W2904368497 hasVolume "43" @default.
- W2904368497 isParatext "false" @default.
- W2904368497 isRetracted "false" @default.
- W2904368497 magId "2904368497" @default.
- W2904368497 workType "article" @default.