Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904372003> ?p ?o ?g. }
- W2904372003 endingPage "14" @default.
- W2904372003 startingPage "1" @default.
- W2904372003 abstract "The role of PD-L1 as a prognostic and predictive biomarker is an area of great interest. However, there is a lack of consensus on how to deliver PD-L1 as a clinical biomarker. At the heart of this conundrum is the subjective scoring of PD-L1 IHC in most studies to date. Current standard scoring systems involve separation of epithelial and inflammatory cells and find clinical significance in different percentages of expression, e.g., above or below 1%. Clearly, an objective, reproducible and accurate approach to PD-L1 scoring would bring a degree of necessary consistency to this landscape. Using a systematic comparison of technologies and the application of QuPath, a digital pathology platform, we show that high PD-L1 expression is associated with improved clinical outcome in Triple Negative breast cancer in the context of standard of care (SoC) chemotherapy, consistent with previous findings. In addition, we demonstrate for the first time that high PD-L1 expression is also associated with better outcome in ER- disease as a whole including HER2+ breast cancer. We demonstrate the influence of antibody choice on quantification and clinical impact with the Ventana antibody (SP142) providing the most robust assay in our hands. Through sampling different regions of the tumour, we show that tumour rich regions display the greatest range of PD-L1 expression and this has the most clinical significance compared to stroma and lymphoid rich areas. Furthermore, we observe that both inflammatory and epithelial PD-L1 expression are associated with improved survival in the context of chemotherapy. Moreover, as seen with PD-L1 inhibitor studies, a low threshold of PD-L1 expression stratifies patient outcome. This emphasises the importance of using digital pathology and precise biomarker quantitation to achieve accurate and reproducible scores that can discriminate low PD-L1 expression." @default.
- W2904372003 created "2018-12-22" @default.
- W2904372003 creator A5014420290 @default.
- W2904372003 creator A5014851181 @default.
- W2904372003 creator A5033442365 @default.
- W2904372003 creator A5034722527 @default.
- W2904372003 creator A5039482198 @default.
- W2904372003 creator A5040888090 @default.
- W2904372003 creator A5045420024 @default.
- W2904372003 creator A5046445923 @default.
- W2904372003 creator A5048652049 @default.
- W2904372003 creator A5053522042 @default.
- W2904372003 creator A5053859457 @default.
- W2904372003 creator A5054132241 @default.
- W2904372003 creator A5066381223 @default.
- W2904372003 creator A5067880138 @default.
- W2904372003 creator A5077990086 @default.
- W2904372003 creator A5088266020 @default.
- W2904372003 date "2018-12-17" @default.
- W2904372003 modified "2023-10-10" @default.
- W2904372003 title "Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good Outcome in ER-/HER2+ Breast Cancer" @default.
- W2904372003 cites W1752668680 @default.
- W2904372003 cites W1913780655 @default.
- W2904372003 cites W1919869867 @default.
- W2904372003 cites W1970097983 @default.
- W2904372003 cites W1971208896 @default.
- W2904372003 cites W1987123970 @default.
- W2904372003 cites W1994238092 @default.
- W2904372003 cites W2002250199 @default.
- W2904372003 cites W2016983859 @default.
- W2904372003 cites W2024670380 @default.
- W2904372003 cites W2032900167 @default.
- W2904372003 cites W2042699075 @default.
- W2904372003 cites W2046972425 @default.
- W2904372003 cites W2049491375 @default.
- W2904372003 cites W2050999762 @default.
- W2904372003 cites W2057186227 @default.
- W2904372003 cites W2063264144 @default.
- W2904372003 cites W2066471812 @default.
- W2904372003 cites W2071036685 @default.
- W2904372003 cites W2071606440 @default.
- W2904372003 cites W2071865120 @default.
- W2904372003 cites W2097255042 @default.
- W2904372003 cites W2097539177 @default.
- W2904372003 cites W2098683355 @default.
- W2904372003 cites W2100413206 @default.
- W2904372003 cites W2104898921 @default.
- W2904372003 cites W2105133921 @default.
- W2904372003 cites W2107380545 @default.
- W2904372003 cites W2111225997 @default.
- W2904372003 cites W2112790287 @default.
- W2904372003 cites W2117775530 @default.
- W2904372003 cites W2120431466 @default.
- W2904372003 cites W2124427232 @default.
- W2904372003 cites W2130598050 @default.
- W2904372003 cites W2134878729 @default.
- W2904372003 cites W2136313650 @default.
- W2904372003 cites W2142300779 @default.
- W2904372003 cites W2143459396 @default.
- W2904372003 cites W2150671673 @default.
- W2904372003 cites W2158348986 @default.
- W2904372003 cites W2161558877 @default.
- W2904372003 cites W2163035374 @default.
- W2904372003 cites W2173378555 @default.
- W2904372003 cites W2194796823 @default.
- W2904372003 cites W2266470544 @default.
- W2904372003 cites W2277555391 @default.
- W2904372003 cites W2289044916 @default.
- W2904372003 cites W2289528730 @default.
- W2904372003 cites W2344657883 @default.
- W2904372003 cites W2504822853 @default.
- W2904372003 cites W2578980111 @default.
- W2904372003 cites W2589193607 @default.
- W2904372003 cites W2596393908 @default.
- W2904372003 cites W2725398806 @default.
- W2904372003 cites W2767957793 @default.
- W2904372003 cites W2772037929 @default.
- W2904372003 cites W2779273646 @default.
- W2904372003 cites W2791853474 @default.
- W2904372003 cites W2794577178 @default.
- W2904372003 cites W2800373684 @default.
- W2904372003 cites W2806388842 @default.
- W2904372003 cites W2895325997 @default.
- W2904372003 cites W2952481429 @default.
- W2904372003 doi "https://doi.org/10.1155/2018/2937012" @default.
- W2904372003 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6311859" @default.
- W2904372003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30651729" @default.
- W2904372003 hasPublicationYear "2018" @default.
- W2904372003 type Work @default.
- W2904372003 sameAs 2904372003 @default.
- W2904372003 citedByCount "41" @default.
- W2904372003 countsByYear W29043720032019 @default.
- W2904372003 countsByYear W29043720032020 @default.
- W2904372003 countsByYear W29043720032021 @default.
- W2904372003 countsByYear W29043720032022 @default.
- W2904372003 countsByYear W29043720032023 @default.
- W2904372003 crossrefType "journal-article" @default.
- W2904372003 hasAuthorship W2904372003A5014420290 @default.