Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904393310> ?p ?o ?g. }
- W2904393310 endingPage "43" @default.
- W2904393310 startingPage "31" @default.
- W2904393310 abstract "Litter decomposition is a vital part of the global carbon cycle as it determines not only the amount of carbon to be sequestered, but also how fast carbon re-enters the cycle. Freshwater systems play an active role in the carbon cycle as it receives, and decomposes, terrestrial litter material alongside decomposing aquatic plant litter. Decomposition of organic matter in the aquatic environment is directly controlled by water temperature and nutrient availability, which are continuously affected by global change. We adapted the Tea Bag Index (TBI), a highly standardized methodology for determining soil decomposition, for lakes by incorporating a leaching factor. By placing Lipton pyramid tea bags in the aquatic environment for 3 h, we quantified the period of intense leaching which usually takes place prior to litter (tea) decomposition. Standard TBI methodology was followed after this step to determine how fast decomposition takes place (decomposition rate, k1) and how much of the material cannot be broken down and is thus sequestered (stabilization factor, S). A Citizen Science project was organized to test the aquatic TBI in 40 European lakes located in four climate zones, ranging from oligotrophic to hypereutrophic systems. We expected that warmer and/or eutrophic lakes would have a higher decomposition rate and a more efficient microbial community resulting in less tea material to be sequestered. The overall high decomposition rates (k1) found confirm the active role lakes play in the global carbon cycle. Across climate regions the lakes in the warmer temperate zone displayed a higher decomposition rate (k1) compared to the colder lakes in the continental and polar zones. Across trophic states, decomposition rates were higher in eutrophic lakes compared to oligotrophic lakes. Additionally, the eutrophic lakes showed a higher stabilization (S), thus a less efficient microbial community, compared to the oligotrophic lakes, although the variation within this group was high. Our results clearly show that the TBI can be used to adequately assess the decomposition process in aquatic systems. Using “alien standard litter” such as tea provides a powerful way to compare decomposition across climates, trophic states and ecosystems. By providing standardized protocols, a website, as well as face to face meetings, we also showed that collecting scientifically relevant data can go hand in hand with increasing scientific and environmental literacy in participants. Gathering process-based information about lake ecosystems gives managers the best tools to anticipate and react to future global change. Furthermore, combining this process-based information with citizen science, thus outreach, is in complete agreement with the Water Framework Directive goals as set in 2010." @default.
- W2904393310 created "2018-12-22" @default.
- W2904393310 creator A5004730813 @default.
- W2904393310 creator A5016414850 @default.
- W2904393310 creator A5022860046 @default.
- W2904393310 creator A5025409084 @default.
- W2904393310 creator A5031112385 @default.
- W2904393310 creator A5040404140 @default.
- W2904393310 creator A5045125564 @default.
- W2904393310 creator A5045272485 @default.
- W2904393310 creator A5067765625 @default.
- W2904393310 creator A5071173864 @default.
- W2904393310 creator A5072255652 @default.
- W2904393310 creator A5089584100 @default.
- W2904393310 date "2019-03-01" @default.
- W2904393310 modified "2023-10-13" @default.
- W2904393310 title "An affordable and reliable assessment of aquatic decomposition: Tailoring the Tea Bag Index to surface waters" @default.
- W2904393310 cites W1608236576 @default.
- W2904393310 cites W1979274632 @default.
- W2904393310 cites W1980262753 @default.
- W2904393310 cites W1981253662 @default.
- W2904393310 cites W1987144716 @default.
- W2904393310 cites W1987455229 @default.
- W2904393310 cites W1989082422 @default.
- W2904393310 cites W1993912437 @default.
- W2904393310 cites W1994190549 @default.
- W2904393310 cites W1995821412 @default.
- W2904393310 cites W2009138626 @default.
- W2904393310 cites W2010637340 @default.
- W2904393310 cites W2017217835 @default.
- W2904393310 cites W2018134771 @default.
- W2904393310 cites W2027010411 @default.
- W2904393310 cites W2030377988 @default.
- W2904393310 cites W2041661627 @default.
- W2904393310 cites W2049661893 @default.
- W2904393310 cites W2049765178 @default.
- W2904393310 cites W2054593957 @default.
- W2904393310 cites W2058540316 @default.
- W2904393310 cites W2061521483 @default.
- W2904393310 cites W2067806491 @default.
- W2904393310 cites W2069718219 @default.
- W2904393310 cites W2076897940 @default.
- W2904393310 cites W2079902815 @default.
- W2904393310 cites W2081692958 @default.
- W2904393310 cites W2082008228 @default.
- W2904393310 cites W2083412390 @default.
- W2904393310 cites W2083857556 @default.
- W2904393310 cites W2100338030 @default.
- W2904393310 cites W2100468073 @default.
- W2904393310 cites W2105414963 @default.
- W2904393310 cites W2106216867 @default.
- W2904393310 cites W2107097094 @default.
- W2904393310 cites W2108686678 @default.
- W2904393310 cites W2110023982 @default.
- W2904393310 cites W2120514850 @default.
- W2904393310 cites W2123134406 @default.
- W2904393310 cites W2124939796 @default.
- W2904393310 cites W2131712042 @default.
- W2904393310 cites W2133501143 @default.
- W2904393310 cites W2133564104 @default.
- W2904393310 cites W2136670482 @default.
- W2904393310 cites W2138764013 @default.
- W2904393310 cites W2139156166 @default.
- W2904393310 cites W2148452534 @default.
- W2904393310 cites W2150904688 @default.
- W2904393310 cites W2151915598 @default.
- W2904393310 cites W2169900057 @default.
- W2904393310 cites W2202665948 @default.
- W2904393310 cites W2219629782 @default.
- W2904393310 cites W2287905939 @default.
- W2904393310 cites W2325207665 @default.
- W2904393310 cites W2341384023 @default.
- W2904393310 cites W2529869467 @default.
- W2904393310 cites W2606040614 @default.
- W2904393310 cites W2765810277 @default.
- W2904393310 cites W2767220445 @default.
- W2904393310 cites W2767565216 @default.
- W2904393310 doi "https://doi.org/10.1016/j.watres.2018.11.081" @default.
- W2904393310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30594088" @default.
- W2904393310 hasPublicationYear "2019" @default.
- W2904393310 type Work @default.
- W2904393310 sameAs 2904393310 @default.
- W2904393310 citedByCount "35" @default.
- W2904393310 countsByYear W29043933102019 @default.
- W2904393310 countsByYear W29043933102020 @default.
- W2904393310 countsByYear W29043933102021 @default.
- W2904393310 countsByYear W29043933102022 @default.
- W2904393310 countsByYear W29043933102023 @default.
- W2904393310 crossrefType "journal-article" @default.
- W2904393310 hasAuthorship W2904393310A5004730813 @default.
- W2904393310 hasAuthorship W2904393310A5016414850 @default.
- W2904393310 hasAuthorship W2904393310A5022860046 @default.
- W2904393310 hasAuthorship W2904393310A5025409084 @default.
- W2904393310 hasAuthorship W2904393310A5031112385 @default.
- W2904393310 hasAuthorship W2904393310A5040404140 @default.
- W2904393310 hasAuthorship W2904393310A5045125564 @default.
- W2904393310 hasAuthorship W2904393310A5045272485 @default.
- W2904393310 hasAuthorship W2904393310A5067765625 @default.