Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904396188> ?p ?o ?g. }
- W2904396188 endingPage "132" @default.
- W2904396188 startingPage "123" @default.
- W2904396188 abstract "Predicting success before full scale manufacturing is the cornerstone of every high-tech industry. Many factors should be considered when designing a product. Design of Experiments (DOE) has been a major, conventional method for such purpose. Moreover, nowadays, Machine Learning (ML) provides fast processing, real-time predictions with a continuous quality improvement for complex industrial design processes. ML with big data is known to handle multi-dimensional and multi-variate data in dynamic industrial systems. However, the ability of the ML methods against limited training datasets has been addressed scarcely. In the present study, a Taguchi DOE approach combined with two selected common ML approaches, the Support Vector Regression (SVR) and Artificial Neural Network (ANN), have been assessed against producing a robust prediction tool for mechanical properties of carbon fibers with a limited training dataset. To this end, empirical models based on three rendering parameters of the stabilization reaction process of oxidized Polyacrylonitrile (PAN) fibers (OPF) have been created. These rendering parameters were obtained according to the explanation of whole Fourier transform infrared attenuated total reflectance (FT-IR ATR) spectra. ML revealed a very promising agreement between the trained empirical models and experimental data. Namely, in terms of the fibers Young’s modulus, the results showed that the SVR empirical model with the average error of less than ±2.4% had a better performance than ANN-LMA (Levenberg –Marquardt algorithm) with the average error of less than ±2.7%. However, in terms of the fibers tensile strength, it was concluded that ANN-LMA empirical model with the average error of less than ±3.7% had slightly surpassed the SVR with the average error of less than ±4.1% in this case study." @default.
- W2904396188 created "2018-12-22" @default.
- W2904396188 creator A5029124281 @default.
- W2904396188 creator A5029249807 @default.
- W2904396188 creator A5029271356 @default.
- W2904396188 creator A5063924205 @default.
- W2904396188 creator A5071894884 @default.
- W2904396188 creator A5073960057 @default.
- W2904396188 date "2019-02-01" @default.
- W2904396188 modified "2023-10-17" @default.
- W2904396188 title "A machine learning case study with limited data for prediction of carbon fiber mechanical properties" @default.
- W2904396188 cites W1496111445 @default.
- W2904396188 cites W1764013687 @default.
- W2904396188 cites W190145745 @default.
- W2904396188 cites W1966393407 @default.
- W2904396188 cites W1968712210 @default.
- W2904396188 cites W1974740346 @default.
- W2904396188 cites W1978577981 @default.
- W2904396188 cites W1980569164 @default.
- W2904396188 cites W1988748730 @default.
- W2904396188 cites W1990816055 @default.
- W2904396188 cites W1992181665 @default.
- W2904396188 cites W1994212474 @default.
- W2904396188 cites W1995492501 @default.
- W2904396188 cites W2006301865 @default.
- W2904396188 cites W2019075755 @default.
- W2904396188 cites W2019178832 @default.
- W2904396188 cites W2035247785 @default.
- W2904396188 cites W2043681729 @default.
- W2904396188 cites W2051948444 @default.
- W2904396188 cites W2059086422 @default.
- W2904396188 cites W2061701726 @default.
- W2904396188 cites W2072486188 @default.
- W2904396188 cites W2083171393 @default.
- W2904396188 cites W2087923374 @default.
- W2904396188 cites W2092396707 @default.
- W2904396188 cites W2098254439 @default.
- W2904396188 cites W2151233588 @default.
- W2904396188 cites W2160677044 @default.
- W2904396188 cites W2474990914 @default.
- W2904396188 cites W2514515390 @default.
- W2904396188 cites W2551895731 @default.
- W2904396188 cites W2570332949 @default.
- W2904396188 cites W2729925435 @default.
- W2904396188 cites W2770658973 @default.
- W2904396188 cites W2793411562 @default.
- W2904396188 cites W2896657849 @default.
- W2904396188 cites W3045498902 @default.
- W2904396188 cites W4239510810 @default.
- W2904396188 cites W78793244 @default.
- W2904396188 doi "https://doi.org/10.1016/j.compind.2018.11.004" @default.
- W2904396188 hasPublicationYear "2019" @default.
- W2904396188 type Work @default.
- W2904396188 sameAs 2904396188 @default.
- W2904396188 citedByCount "29" @default.
- W2904396188 countsByYear W29043961882019 @default.
- W2904396188 countsByYear W29043961882020 @default.
- W2904396188 countsByYear W29043961882021 @default.
- W2904396188 countsByYear W29043961882022 @default.
- W2904396188 countsByYear W29043961882023 @default.
- W2904396188 crossrefType "journal-article" @default.
- W2904396188 hasAuthorship W2904396188A5029124281 @default.
- W2904396188 hasAuthorship W2904396188A5029249807 @default.
- W2904396188 hasAuthorship W2904396188A5029271356 @default.
- W2904396188 hasAuthorship W2904396188A5063924205 @default.
- W2904396188 hasAuthorship W2904396188A5071894884 @default.
- W2904396188 hasAuthorship W2904396188A5073960057 @default.
- W2904396188 hasConcept C105795698 @default.
- W2904396188 hasConcept C112950240 @default.
- W2904396188 hasConcept C119857082 @default.
- W2904396188 hasConcept C12267149 @default.
- W2904396188 hasConcept C133199616 @default.
- W2904396188 hasConcept C139945424 @default.
- W2904396188 hasConcept C154945302 @default.
- W2904396188 hasConcept C159985019 @default.
- W2904396188 hasConcept C192562407 @default.
- W2904396188 hasConcept C205711294 @default.
- W2904396188 hasConcept C2776056205 @default.
- W2904396188 hasConcept C33923547 @default.
- W2904396188 hasConcept C34559072 @default.
- W2904396188 hasConcept C41008148 @default.
- W2904396188 hasConcept C44154836 @default.
- W2904396188 hasConcept C50644808 @default.
- W2904396188 hasConcept C521977710 @default.
- W2904396188 hasConcept C83469408 @default.
- W2904396188 hasConceptScore W2904396188C105795698 @default.
- W2904396188 hasConceptScore W2904396188C112950240 @default.
- W2904396188 hasConceptScore W2904396188C119857082 @default.
- W2904396188 hasConceptScore W2904396188C12267149 @default.
- W2904396188 hasConceptScore W2904396188C133199616 @default.
- W2904396188 hasConceptScore W2904396188C139945424 @default.
- W2904396188 hasConceptScore W2904396188C154945302 @default.
- W2904396188 hasConceptScore W2904396188C159985019 @default.
- W2904396188 hasConceptScore W2904396188C192562407 @default.
- W2904396188 hasConceptScore W2904396188C205711294 @default.
- W2904396188 hasConceptScore W2904396188C2776056205 @default.
- W2904396188 hasConceptScore W2904396188C33923547 @default.
- W2904396188 hasConceptScore W2904396188C34559072 @default.