Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904398209> ?p ?o ?g. }
- W2904398209 endingPage "1792" @default.
- W2904398209 startingPage "1775" @default.
- W2904398209 abstract "Identification of sleep stages is a fundamental step in clinical sleep analysis. Existing automatic sleep staging systems ignore two major issues: 1) Most of existing automatic sleep staging systems are using numerical classification methods without involving medical knowledge. These kinds of systems are not yet understood and accepted by physicians. 2) Individual variability sources are ignored. However, individual variability is observed in many aspects of sleep research (such as polysomnography recordings, sleep patterns, and sleep architecture). In this paper, a hybrid expert system is proposed to mimic the decision-making process of clinical sleep staging in accordance with the medical knowledge by using symbolic fusion. To formalize the medical guideline and knowledge, thresholds are used for translating the sleep events into symbols and the sleep event’s threshold dependencies are analyzed for fully understanding the thresholds dependencies among different sleep stages and subjects. Meanwhile, the differential evolution algorithm is adopted to automate the setting-up of thresholds that are used in the symbolic fusion model and to provide personalized thresholds, which allows taking the individual variability into consideration. The robustness and clinical applicability of the proposed system are evaluated and demonstrated on a clinical dataset. The dataset is composed of 16 patients (nine males and seven females) and scored by physicians. Only 5% of the dataset is used for the training process to obtain the personalized thresholds. Then, these personalized thresholds are passed to the classification process, and the overall accuracy on the identification of five sleep stages reaches 80.09%. Using a small dataset for the training process, the proposed system not only drastically reduces the training set but also achieves favorable results compared with most of the existing works." @default.
- W2904398209 created "2018-12-22" @default.
- W2904398209 creator A5017541508 @default.
- W2904398209 creator A5019342840 @default.
- W2904398209 creator A5053371949 @default.
- W2904398209 creator A5063253432 @default.
- W2904398209 creator A5072566142 @default.
- W2904398209 creator A5079647803 @default.
- W2904398209 date "2019-01-01" @default.
- W2904398209 modified "2023-10-14" @default.
- W2904398209 title "Towards a Hybrid Expert System Based on Sleep Event’s Threshold Dependencies for Automated Personalized Sleep Staging by Combining Symbolic Fusion and Differential Evolution Algorithm" @default.
- W2904398209 cites W140253324 @default.
- W2904398209 cites W1595159159 @default.
- W2904398209 cites W1963756232 @default.
- W2904398209 cites W2003193072 @default.
- W2904398209 cites W2006166470 @default.
- W2904398209 cites W2008056655 @default.
- W2904398209 cites W2017689092 @default.
- W2904398209 cites W2023817852 @default.
- W2904398209 cites W2040895929 @default.
- W2904398209 cites W2071522110 @default.
- W2904398209 cites W2080195234 @default.
- W2904398209 cites W2096186917 @default.
- W2904398209 cites W2114379455 @default.
- W2904398209 cites W2123184828 @default.
- W2904398209 cites W2143159308 @default.
- W2904398209 cites W2156761481 @default.
- W2904398209 cites W2164777277 @default.
- W2904398209 cites W2169656545 @default.
- W2904398209 cites W2256612410 @default.
- W2904398209 cites W2326217950 @default.
- W2904398209 cites W2482168716 @default.
- W2904398209 cites W2536346774 @default.
- W2904398209 cites W2539353608 @default.
- W2904398209 cites W2581965573 @default.
- W2904398209 cites W2588327383 @default.
- W2904398209 cites W2591025119 @default.
- W2904398209 cites W2728052724 @default.
- W2904398209 cites W2789695674 @default.
- W2904398209 cites W2790486743 @default.
- W2904398209 cites W2792420355 @default.
- W2904398209 cites W2793410326 @default.
- W2904398209 cites W2793865197 @default.
- W2904398209 cites W2883169763 @default.
- W2904398209 cites W2883682098 @default.
- W2904398209 cites W2887798437 @default.
- W2904398209 cites W2891516347 @default.
- W2904398209 cites W2911964244 @default.
- W2904398209 cites W4238506921 @default.
- W2904398209 cites W4297957988 @default.
- W2904398209 doi "https://doi.org/10.1109/access.2018.2887082" @default.
- W2904398209 hasPublicationYear "2019" @default.
- W2904398209 type Work @default.
- W2904398209 sameAs 2904398209 @default.
- W2904398209 citedByCount "6" @default.
- W2904398209 countsByYear W29043982092020 @default.
- W2904398209 countsByYear W29043982092021 @default.
- W2904398209 countsByYear W29043982092022 @default.
- W2904398209 countsByYear W29043982092023 @default.
- W2904398209 crossrefType "journal-article" @default.
- W2904398209 hasAuthorship W2904398209A5017541508 @default.
- W2904398209 hasAuthorship W2904398209A5019342840 @default.
- W2904398209 hasAuthorship W2904398209A5053371949 @default.
- W2904398209 hasAuthorship W2904398209A5063253432 @default.
- W2904398209 hasAuthorship W2904398209A5072566142 @default.
- W2904398209 hasAuthorship W2904398209A5079647803 @default.
- W2904398209 hasBestOaLocation W29043982091 @default.
- W2904398209 hasConcept C104317684 @default.
- W2904398209 hasConcept C111919701 @default.
- W2904398209 hasConcept C11413529 @default.
- W2904398209 hasConcept C116834253 @default.
- W2904398209 hasConcept C118552586 @default.
- W2904398209 hasConcept C119857082 @default.
- W2904398209 hasConcept C124101348 @default.
- W2904398209 hasConcept C1513209611 @default.
- W2904398209 hasConcept C154945302 @default.
- W2904398209 hasConcept C185592680 @default.
- W2904398209 hasConcept C188394188 @default.
- W2904398209 hasConcept C2775841894 @default.
- W2904398209 hasConcept C2778205975 @default.
- W2904398209 hasConcept C2781210498 @default.
- W2904398209 hasConcept C2910364982 @default.
- W2904398209 hasConcept C41008148 @default.
- W2904398209 hasConcept C522805319 @default.
- W2904398209 hasConcept C55493867 @default.
- W2904398209 hasConcept C58328972 @default.
- W2904398209 hasConcept C59822182 @default.
- W2904398209 hasConcept C63479239 @default.
- W2904398209 hasConcept C71924100 @default.
- W2904398209 hasConcept C86803240 @default.
- W2904398209 hasConceptScore W2904398209C104317684 @default.
- W2904398209 hasConceptScore W2904398209C111919701 @default.
- W2904398209 hasConceptScore W2904398209C11413529 @default.
- W2904398209 hasConceptScore W2904398209C116834253 @default.
- W2904398209 hasConceptScore W2904398209C118552586 @default.
- W2904398209 hasConceptScore W2904398209C119857082 @default.
- W2904398209 hasConceptScore W2904398209C124101348 @default.
- W2904398209 hasConceptScore W2904398209C1513209611 @default.