Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904399478> ?p ?o ?g. }
- W2904399478 endingPage "1908" @default.
- W2904399478 startingPage "1897" @default.
- W2904399478 abstract "People identification using gait information (i.e., the way a person walks) obtained from inertial sensors is a robust approach that can be used in multiple situations where vision-based systems are not applicable. Typically, previous methods use hand-crafted features or deep learning approaches with pre-processed features as input. In contrast, we present a new deep learning-based end-to-end approach that employs raw inertial data as input. By this way, our approach is able to automatically learn the best representations without any constraint introduced by the pre-processed features. Moreover, we study the fusion of information from multiple inertial sensors and multi-task learning from multiple labels per sample. Our proposal is experimentally validated on the challenging dataset OU-ISIR, which is the largest available dataset for gait recognition using inertial information. After conducting an extensive set of experiments to obtain the best hyper-parameters, our approach is able to achieve state-of-the-art results. Specifically, we improve both the identification accuracy (from 83.8% to 94.8%) and the authentication equal-error-rate (from 5.6 to 1.1). Our experimental results suggest that: 1) the use of hand-crafted features is not necessary for this task as deep learning approaches using raw data achieve better results; 2) the fusion of information from multiple sensors allows to improve the results; and, 3) multi-task learning is able to produce a single model that obtains similar or even better results in multiple tasks than the corresponding models trained for a single task." @default.
- W2904399478 created "2018-12-22" @default.
- W2904399478 creator A5029567783 @default.
- W2904399478 creator A5041004091 @default.
- W2904399478 creator A5042354417 @default.
- W2904399478 creator A5049321507 @default.
- W2904399478 creator A5059048799 @default.
- W2904399478 date "2019-01-01" @default.
- W2904399478 modified "2023-10-13" @default.
- W2904399478 title "An End-to-End Multi-Task and Fusion CNN for Inertial-Based Gait Recognition" @default.
- W2904399478 cites W1516769126 @default.
- W2904399478 cites W1541992384 @default.
- W2904399478 cites W1862849385 @default.
- W2904399478 cites W1963882359 @default.
- W2904399478 cites W1964814818 @default.
- W2904399478 cites W1973300387 @default.
- W2904399478 cites W1984031350 @default.
- W2904399478 cites W1986553199 @default.
- W2904399478 cites W1990250311 @default.
- W2904399478 cites W1991406901 @default.
- W2904399478 cites W1996367218 @default.
- W2904399478 cites W2000159330 @default.
- W2904399478 cites W2015046270 @default.
- W2904399478 cites W2020536997 @default.
- W2904399478 cites W2023962778 @default.
- W2904399478 cites W2027717882 @default.
- W2904399478 cites W2029568429 @default.
- W2904399478 cites W2055158209 @default.
- W2904399478 cites W2068277204 @default.
- W2904399478 cites W2070420170 @default.
- W2904399478 cites W2075303654 @default.
- W2904399478 cites W2080350448 @default.
- W2904399478 cites W2100539820 @default.
- W2904399478 cites W2121147465 @default.
- W2904399478 cites W2130568999 @default.
- W2904399478 cites W2133091065 @default.
- W2904399478 cites W2137604415 @default.
- W2904399478 cites W2146291834 @default.
- W2904399478 cites W2151373013 @default.
- W2904399478 cites W2170672895 @default.
- W2904399478 cites W2171062881 @default.
- W2904399478 cites W2201408361 @default.
- W2904399478 cites W2287234120 @default.
- W2904399478 cites W2346541858 @default.
- W2904399478 cites W2535110112 @default.
- W2904399478 cites W2548928501 @default.
- W2904399478 cites W2556902169 @default.
- W2904399478 cites W2559435062 @default.
- W2904399478 cites W2592878160 @default.
- W2904399478 cites W2735068279 @default.
- W2904399478 cites W2754666677 @default.
- W2904399478 cites W2770546254 @default.
- W2904399478 cites W2772554154 @default.
- W2904399478 cites W2786140540 @default.
- W2904399478 cites W2786638837 @default.
- W2904399478 cites W2789834341 @default.
- W2904399478 cites W2809417801 @default.
- W2904399478 doi "https://doi.org/10.1109/access.2018.2886899" @default.
- W2904399478 hasPublicationYear "2019" @default.
- W2904399478 type Work @default.
- W2904399478 sameAs 2904399478 @default.
- W2904399478 citedByCount "50" @default.
- W2904399478 countsByYear W29043994782018 @default.
- W2904399478 countsByYear W29043994782019 @default.
- W2904399478 countsByYear W29043994782020 @default.
- W2904399478 countsByYear W29043994782021 @default.
- W2904399478 countsByYear W29043994782022 @default.
- W2904399478 countsByYear W29043994782023 @default.
- W2904399478 crossrefType "journal-article" @default.
- W2904399478 hasAuthorship W2904399478A5029567783 @default.
- W2904399478 hasAuthorship W2904399478A5041004091 @default.
- W2904399478 hasAuthorship W2904399478A5042354417 @default.
- W2904399478 hasAuthorship W2904399478A5049321507 @default.
- W2904399478 hasAuthorship W2904399478A5059048799 @default.
- W2904399478 hasBestOaLocation W29043994781 @default.
- W2904399478 hasConcept C127413603 @default.
- W2904399478 hasConcept C151800584 @default.
- W2904399478 hasConcept C154945302 @default.
- W2904399478 hasConcept C201995342 @default.
- W2904399478 hasConcept C2780451532 @default.
- W2904399478 hasConcept C28490314 @default.
- W2904399478 hasConcept C31972630 @default.
- W2904399478 hasConcept C33954974 @default.
- W2904399478 hasConcept C41008148 @default.
- W2904399478 hasConcept C71924100 @default.
- W2904399478 hasConcept C74296488 @default.
- W2904399478 hasConcept C99508421 @default.
- W2904399478 hasConceptScore W2904399478C127413603 @default.
- W2904399478 hasConceptScore W2904399478C151800584 @default.
- W2904399478 hasConceptScore W2904399478C154945302 @default.
- W2904399478 hasConceptScore W2904399478C201995342 @default.
- W2904399478 hasConceptScore W2904399478C2780451532 @default.
- W2904399478 hasConceptScore W2904399478C28490314 @default.
- W2904399478 hasConceptScore W2904399478C31972630 @default.
- W2904399478 hasConceptScore W2904399478C33954974 @default.
- W2904399478 hasConceptScore W2904399478C41008148 @default.
- W2904399478 hasConceptScore W2904399478C71924100 @default.
- W2904399478 hasConceptScore W2904399478C74296488 @default.