Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904402301> ?p ?o ?g. }
- W2904402301 endingPage "216" @default.
- W2904402301 startingPage "209" @default.
- W2904402301 abstract "Abstract In this paper, the experimental data on the thermal conductivity of EG based hybrid nanofluid containing zinc oxide and titanium oxide have been used. At the first, three two-variable correlations have been proposed using curve-fitting on experimental data. After that, the best transfer function for training the artificial neural network has been selected. The input variables of neural network were temperature and solid volume fraction, while the output variable was the thermal conductivity enhancement of the nanofluid. Moreover, the correlation outputs, ANN results and experimental data have been compared. The results showed that there is a good agreement between experimental data and neural network results so that the resulting model of the neural network is able to predict the thermal conductivity enhancement of the nanofluid. The findings also indicated that the accuracy of the neural network is much greater than the curve fitting method to predict thermal conductivity enhancement of ZnO-TiO2/EG hybrid nanofluid." @default.
- W2904402301 created "2018-12-22" @default.
- W2904402301 creator A5014658198 @default.
- W2904402301 creator A5017599229 @default.
- W2904402301 creator A5027804062 @default.
- W2904402301 creator A5034312242 @default.
- W2904402301 creator A5050594265 @default.
- W2904402301 creator A5084862102 @default.
- W2904402301 date "2019-04-01" @default.
- W2904402301 modified "2023-10-11" @default.
- W2904402301 title "Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data" @default.
- W2904402301 cites W1124123259 @default.
- W2904402301 cites W1974014039 @default.
- W2904402301 cites W2021109748 @default.
- W2904402301 cites W2049971637 @default.
- W2904402301 cites W2049985736 @default.
- W2904402301 cites W2070580517 @default.
- W2904402301 cites W2072096676 @default.
- W2904402301 cites W2077266528 @default.
- W2904402301 cites W2093468972 @default.
- W2904402301 cites W2137918713 @default.
- W2904402301 cites W2144929139 @default.
- W2904402301 cites W2214851944 @default.
- W2904402301 cites W2316041881 @default.
- W2904402301 cites W2317633857 @default.
- W2904402301 cites W2339732072 @default.
- W2904402301 cites W2343035879 @default.
- W2904402301 cites W2462216100 @default.
- W2904402301 cites W2475145860 @default.
- W2904402301 cites W2517752774 @default.
- W2904402301 cites W2519999590 @default.
- W2904402301 cites W2532885117 @default.
- W2904402301 cites W2548009842 @default.
- W2904402301 cites W2591864409 @default.
- W2904402301 cites W2604538855 @default.
- W2904402301 cites W2605216613 @default.
- W2904402301 cites W2734308509 @default.
- W2904402301 cites W2743344065 @default.
- W2904402301 cites W2752339231 @default.
- W2904402301 cites W2759384439 @default.
- W2904402301 cites W2762504945 @default.
- W2904402301 cites W2764093485 @default.
- W2904402301 cites W2765270587 @default.
- W2904402301 cites W2767062295 @default.
- W2904402301 cites W2769077661 @default.
- W2904402301 cites W2769255529 @default.
- W2904402301 cites W2770564579 @default.
- W2904402301 cites W2770731167 @default.
- W2904402301 cites W2781611473 @default.
- W2904402301 cites W2782588225 @default.
- W2904402301 cites W2791290339 @default.
- W2904402301 cites W2793740964 @default.
- W2904402301 cites W2806488151 @default.
- W2904402301 cites W2808309329 @default.
- W2904402301 cites W2809509636 @default.
- W2904402301 cites W2809538333 @default.
- W2904402301 cites W2862532127 @default.
- W2904402301 cites W2864624943 @default.
- W2904402301 cites W2886062828 @default.
- W2904402301 cites W2889667970 @default.
- W2904402301 cites W2899094844 @default.
- W2904402301 cites W566252697 @default.
- W2904402301 cites W851963713 @default.
- W2904402301 doi "https://doi.org/10.1016/j.physa.2018.12.010" @default.
- W2904402301 hasPublicationYear "2019" @default.
- W2904402301 type Work @default.
- W2904402301 sameAs 2904402301 @default.
- W2904402301 citedByCount "137" @default.
- W2904402301 countsByYear W29044023012019 @default.
- W2904402301 countsByYear W29044023012020 @default.
- W2904402301 countsByYear W29044023012021 @default.
- W2904402301 countsByYear W29044023012022 @default.
- W2904402301 countsByYear W29044023012023 @default.
- W2904402301 crossrefType "journal-article" @default.
- W2904402301 hasAuthorship W2904402301A5014658198 @default.
- W2904402301 hasAuthorship W2904402301A5017599229 @default.
- W2904402301 hasAuthorship W2904402301A5027804062 @default.
- W2904402301 hasAuthorship W2904402301A5034312242 @default.
- W2904402301 hasAuthorship W2904402301A5050594265 @default.
- W2904402301 hasAuthorship W2904402301A5084862102 @default.
- W2904402301 hasConcept C105795698 @default.
- W2904402301 hasConcept C119857082 @default.
- W2904402301 hasConcept C121332964 @default.
- W2904402301 hasConcept C154945302 @default.
- W2904402301 hasConcept C155672457 @default.
- W2904402301 hasConcept C159985019 @default.
- W2904402301 hasConcept C171250308 @default.
- W2904402301 hasConcept C184389593 @default.
- W2904402301 hasConcept C192562407 @default.
- W2904402301 hasConcept C204530211 @default.
- W2904402301 hasConcept C21946209 @default.
- W2904402301 hasConcept C33923547 @default.
- W2904402301 hasConcept C41008148 @default.
- W2904402301 hasConcept C50644808 @default.
- W2904402301 hasConcept C55037315 @default.
- W2904402301 hasConcept C97346530 @default.
- W2904402301 hasConcept C97355855 @default.
- W2904402301 hasConceptScore W2904402301C105795698 @default.