Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904451610> ?p ?o ?g. }
- W2904451610 endingPage "275" @default.
- W2904451610 startingPage "268" @default.
- W2904451610 abstract "What is known and objective Drug-drug interactions (DDI) are frequent causes of adverse clinical drug reactions. Efforts have been directed at the early stage to achieve accurate identification of DDI for drug safety assessments, including the development of in silico predictive methods. In particular, similarity-based in silico methods have been developed to assess DDI with good accuracies, and machine learning methods have been employed to further extend the predictive range of similarity-based approaches. However, the performance of a developed machine learning method is lower than expectations partly because of the use of less diverse DDI training data sets and a less optimal set of similarity measures. Method In this work, we developed a machine learning model using support vector machines (SVMs) based on the literature-reported established set of similarity measures and comprehensive training data sets. The established similarity measures include the 2D molecular structure similarity, 3D pharmacophoric similarity, interaction profile fingerprint (IPF) similarity, target similarity and adverse drug effect (ADE) similarity, which were extracted from well-known databases, such as DrugBank and Side Effect Resource (SIDER). A pairwise kernel was constructed for the known and possible drug pairs based on the five established similarity measures and then used as the input vector of the SVM. Result The 10-fold cross-validation studies showed a predictive performance of AUROC >0.97, which is significantly improved compared with the AUROC of 0.67 of an analogously developed machine learning model. Our study suggested that a similarity-based SVM prediction is highly useful for identifying DDI. Conclusion in silico methods based on multifarious drug similarities have been suggested to be feasible for DDI prediction in various studies. In this way, our pairwise kernel SVM model had better accuracies than some previous works, which can be used as a pharmacovigilance tool to detect potential DDI." @default.
- W2904451610 created "2018-12-22" @default.
- W2904451610 creator A5015507667 @default.
- W2904451610 creator A5028067395 @default.
- W2904451610 creator A5044108628 @default.
- W2904451610 creator A5047932271 @default.
- W2904451610 creator A5058684281 @default.
- W2904451610 creator A5059082373 @default.
- W2904451610 creator A5064619972 @default.
- W2904451610 creator A5082590468 @default.
- W2904451610 creator A5086116641 @default.
- W2904451610 date "2018-12-18" @default.
- W2904451610 modified "2023-10-17" @default.
- W2904451610 title "Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies" @default.
- W2904451610 cites W1968092170 @default.
- W2904451610 cites W2000725455 @default.
- W2904451610 cites W2013181441 @default.
- W2904451610 cites W2026956787 @default.
- W2904451610 cites W2049897884 @default.
- W2904451610 cites W2067704478 @default.
- W2904451610 cites W2070701533 @default.
- W2904451610 cites W2071478164 @default.
- W2904451610 cites W2091439417 @default.
- W2904451610 cites W2092690624 @default.
- W2904451610 cites W2106417713 @default.
- W2904451610 cites W2117397379 @default.
- W2904451610 cites W2118581990 @default.
- W2904451610 cites W2135037015 @default.
- W2904451610 cites W2153635508 @default.
- W2904451610 cites W2167212630 @default.
- W2904451610 cites W2169678694 @default.
- W2904451610 cites W2252158617 @default.
- W2904451610 cites W2256119113 @default.
- W2904451610 cites W2293758815 @default.
- W2904451610 cites W2307935645 @default.
- W2904451610 cites W2401132586 @default.
- W2904451610 cites W2563327824 @default.
- W2904451610 cites W2592839484 @default.
- W2904451610 cites W2608081584 @default.
- W2904451610 cites W2622157970 @default.
- W2904451610 cites W2791988510 @default.
- W2904451610 cites W2809524877 @default.
- W2904451610 cites W2835216631 @default.
- W2904451610 cites W640820731 @default.
- W2904451610 cites W84368778 @default.
- W2904451610 doi "https://doi.org/10.1111/jcpt.12786" @default.
- W2904451610 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30565313" @default.
- W2904451610 hasPublicationYear "2018" @default.
- W2904451610 type Work @default.
- W2904451610 sameAs 2904451610 @default.
- W2904451610 citedByCount "32" @default.
- W2904451610 countsByYear W29044516102019 @default.
- W2904451610 countsByYear W29044516102020 @default.
- W2904451610 countsByYear W29044516102021 @default.
- W2904451610 countsByYear W29044516102022 @default.
- W2904451610 countsByYear W29044516102023 @default.
- W2904451610 crossrefType "journal-article" @default.
- W2904451610 hasAuthorship W2904451610A5015507667 @default.
- W2904451610 hasAuthorship W2904451610A5028067395 @default.
- W2904451610 hasAuthorship W2904451610A5044108628 @default.
- W2904451610 hasAuthorship W2904451610A5047932271 @default.
- W2904451610 hasAuthorship W2904451610A5058684281 @default.
- W2904451610 hasAuthorship W2904451610A5059082373 @default.
- W2904451610 hasAuthorship W2904451610A5064619972 @default.
- W2904451610 hasAuthorship W2904451610A5082590468 @default.
- W2904451610 hasAuthorship W2904451610A5086116641 @default.
- W2904451610 hasBestOaLocation W29044516101 @default.
- W2904451610 hasConcept C103278499 @default.
- W2904451610 hasConcept C114614502 @default.
- W2904451610 hasConcept C115961682 @default.
- W2904451610 hasConcept C119857082 @default.
- W2904451610 hasConcept C12267149 @default.
- W2904451610 hasConcept C124101348 @default.
- W2904451610 hasConcept C154945302 @default.
- W2904451610 hasConcept C155261790 @default.
- W2904451610 hasConcept C184898388 @default.
- W2904451610 hasConcept C2780035454 @default.
- W2904451610 hasConcept C33923547 @default.
- W2904451610 hasConcept C41008148 @default.
- W2904451610 hasConcept C71924100 @default.
- W2904451610 hasConcept C74193536 @default.
- W2904451610 hasConcept C98274493 @default.
- W2904451610 hasConceptScore W2904451610C103278499 @default.
- W2904451610 hasConceptScore W2904451610C114614502 @default.
- W2904451610 hasConceptScore W2904451610C115961682 @default.
- W2904451610 hasConceptScore W2904451610C119857082 @default.
- W2904451610 hasConceptScore W2904451610C12267149 @default.
- W2904451610 hasConceptScore W2904451610C124101348 @default.
- W2904451610 hasConceptScore W2904451610C154945302 @default.
- W2904451610 hasConceptScore W2904451610C155261790 @default.
- W2904451610 hasConceptScore W2904451610C184898388 @default.
- W2904451610 hasConceptScore W2904451610C2780035454 @default.
- W2904451610 hasConceptScore W2904451610C33923547 @default.
- W2904451610 hasConceptScore W2904451610C41008148 @default.
- W2904451610 hasConceptScore W2904451610C71924100 @default.
- W2904451610 hasConceptScore W2904451610C74193536 @default.
- W2904451610 hasConceptScore W2904451610C98274493 @default.
- W2904451610 hasFunder F4320321001 @default.