Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904502453> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2904502453 endingPage "543" @default.
- W2904502453 startingPage "531" @default.
- W2904502453 abstract "Although sentiment analysis on microblog posts has been studied in depth, sentiment analysis of posts is still challenging because of the limited contextual information that they normally contain. In microblog environments, emoticons are frequently used and they have clear emotional meanings. They are important emotional signals for microblog sentimental analysis. Existing studies typically use emoticons as noisy sentiment labels or similar sentiment indicators to effectively train classifier but overlook their emotional potentiality. We address this issue by constructing an emotional space as a feature representation matrix and projecting emoticons and words into the emotional space based on the semantic composition. To improve the performance of sentimental analysis, we propose a new emotion-semantic-enhanced convolutional neural network (ECNN) model. ECNN can use emoticon embedding as an emotional space projection operator. By projecting emoticons and words into an emoticon space, it can help identify subjectivity, polarity, and emotion in microblog environments. It is more capable of capturing emotion semantic than other models, so it can improve the sentiment analysis performance. The experimental results show that this model consistently outperforms other models on the dataset of several sentiment tasks. This paper provides insights on the design of ECNN for sentimental analysis in other natural language processing tasks." @default.
- W2904502453 created "2018-12-22" @default.
- W2904502453 creator A5028771381 @default.
- W2904502453 creator A5032001329 @default.
- W2904502453 creator A5057879702 @default.
- W2904502453 date "2019-03-01" @default.
- W2904502453 modified "2023-09-27" @default.
- W2904502453 title "Emotion-Semantic-Enhanced Neural Network" @default.
- W2904502453 cites W1832693441 @default.
- W2904502453 cites W1984052055 @default.
- W2904502453 cites W2005697477 @default.
- W2904502453 cites W2012461879 @default.
- W2904502453 cites W2014902591 @default.
- W2904502453 cites W2028140375 @default.
- W2904502453 cites W2049434052 @default.
- W2904502453 cites W2077587655 @default.
- W2904502453 cites W2087665422 @default.
- W2904502453 cites W2100495367 @default.
- W2904502453 cites W2107474859 @default.
- W2904502453 cites W2117130368 @default.
- W2904502453 cites W2129011250 @default.
- W2904502453 cites W2166706824 @default.
- W2904502453 cites W2171645516 @default.
- W2904502453 cites W2242874043 @default.
- W2904502453 cites W2250879510 @default.
- W2904502453 cites W2251124635 @default.
- W2904502453 cites W2251394420 @default.
- W2904502453 cites W2251805006 @default.
- W2904502453 cites W2284652523 @default.
- W2904502453 cites W2306941105 @default.
- W2904502453 cites W2514299353 @default.
- W2904502453 cites W2550132532 @default.
- W2904502453 cites W2556605533 @default.
- W2904502453 cites W2606776062 @default.
- W2904502453 cites W2611884298 @default.
- W2904502453 cites W2767245334 @default.
- W2904502453 cites W2776249353 @default.
- W2904502453 cites W2882319491 @default.
- W2904502453 cites W3021474408 @default.
- W2904502453 cites W3122775348 @default.
- W2904502453 cites W4250860020 @default.
- W2904502453 doi "https://doi.org/10.1109/taslp.2018.2885775" @default.
- W2904502453 hasPublicationYear "2019" @default.
- W2904502453 type Work @default.
- W2904502453 sameAs 2904502453 @default.
- W2904502453 citedByCount "30" @default.
- W2904502453 countsByYear W29045024532019 @default.
- W2904502453 countsByYear W29045024532020 @default.
- W2904502453 countsByYear W29045024532021 @default.
- W2904502453 countsByYear W29045024532022 @default.
- W2904502453 countsByYear W29045024532023 @default.
- W2904502453 crossrefType "journal-article" @default.
- W2904502453 hasAuthorship W2904502453A5028771381 @default.
- W2904502453 hasAuthorship W2904502453A5032001329 @default.
- W2904502453 hasAuthorship W2904502453A5057879702 @default.
- W2904502453 hasConcept C154945302 @default.
- W2904502453 hasConcept C15744967 @default.
- W2904502453 hasConcept C204321447 @default.
- W2904502453 hasConcept C41008148 @default.
- W2904502453 hasConcept C50644808 @default.
- W2904502453 hasConceptScore W2904502453C154945302 @default.
- W2904502453 hasConceptScore W2904502453C15744967 @default.
- W2904502453 hasConceptScore W2904502453C204321447 @default.
- W2904502453 hasConceptScore W2904502453C41008148 @default.
- W2904502453 hasConceptScore W2904502453C50644808 @default.
- W2904502453 hasIssue "3" @default.
- W2904502453 hasLocation W29045024531 @default.
- W2904502453 hasOpenAccess W2904502453 @default.
- W2904502453 hasPrimaryLocation W29045024531 @default.
- W2904502453 hasRelatedWork W1552159754 @default.
- W2904502453 hasRelatedWork W2148757832 @default.
- W2904502453 hasRelatedWork W2293457016 @default.
- W2904502453 hasRelatedWork W2368651715 @default.
- W2904502453 hasRelatedWork W2386387936 @default.
- W2904502453 hasRelatedWork W2611614995 @default.
- W2904502453 hasRelatedWork W2748952813 @default.
- W2904502453 hasRelatedWork W2789919619 @default.
- W2904502453 hasRelatedWork W2899084033 @default.
- W2904502453 hasRelatedWork W3107474891 @default.
- W2904502453 hasVolume "27" @default.
- W2904502453 isParatext "false" @default.
- W2904502453 isRetracted "false" @default.
- W2904502453 magId "2904502453" @default.
- W2904502453 workType "article" @default.