Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904507906> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2904507906 endingPage "100228" @default.
- W2904507906 startingPage "100228" @default.
- W2904507906 abstract "Seafarers are vulnerable to suffering from various mental health disorders, most commonly anxiety and depression. Therefore, periodic screening for anxiety and depression is necessary for their health and well-being. Machine learning technology may be useful as a rapid, automated screening procedure to identify at risk seafarers for early referral to psychological counselling and treatment. To compare the performance of machine learning algorithms for screening of anxiety and depression among seafarers. A total 470 seafarers were interviewed at Haldia Dock Complex, India, after obtaining necessary permissions and ethical clearance. Various socio-demographic, occupational, and health-related information were collected. Then presence of anxiety and depression was assessed by the Hospital Anxiety and Depression Scale. Five machine learning classifiers i.e., CatBoost, Logistic Regression, Naïve Bayes, Random Forest, and Support Vector Machine, were evaluated using the Python programming language. CatBoost appeared to be the most satisfactory measure for this purpose, with an accuracy and precision 82.6% and 84.1%, respectively. This study emphasizes the application of machine learning technology in the field of automated screening for mental health illness. Using this technology, a manually derived and time consuming screening procedure for anxiety and depression can be replaced by an automated computer based analysis technique with a degree of accuracy sufficient for screening purposes." @default.
- W2904507906 created "2018-12-22" @default.
- W2904507906 creator A5039826235 @default.
- W2904507906 creator A5050556274 @default.
- W2904507906 date "2019-01-01" @default.
- W2904507906 modified "2023-10-16" @default.
- W2904507906 title "Screening of anxiety and depression among seafarers using machine learning technology" @default.
- W2904507906 cites W1987138256 @default.
- W2904507906 cites W1987414908 @default.
- W2904507906 cites W1991434331 @default.
- W2904507906 cites W1996864343 @default.
- W2904507906 cites W2032456307 @default.
- W2904507906 cites W2037600975 @default.
- W2904507906 cites W2060947741 @default.
- W2904507906 cites W2089846971 @default.
- W2904507906 cites W2155054485 @default.
- W2904507906 cites W2157877920 @default.
- W2904507906 cites W2160422217 @default.
- W2904507906 cites W2226243673 @default.
- W2904507906 cites W2539008110 @default.
- W2904507906 cites W2578467211 @default.
- W2904507906 cites W2737280991 @default.
- W2904507906 doi "https://doi.org/10.1016/j.imu.2019.100228" @default.
- W2904507906 hasPublicationYear "2019" @default.
- W2904507906 type Work @default.
- W2904507906 sameAs 2904507906 @default.
- W2904507906 citedByCount "34" @default.
- W2904507906 countsByYear W29045079062019 @default.
- W2904507906 countsByYear W29045079062020 @default.
- W2904507906 countsByYear W29045079062021 @default.
- W2904507906 countsByYear W29045079062022 @default.
- W2904507906 countsByYear W29045079062023 @default.
- W2904507906 crossrefType "journal-article" @default.
- W2904507906 hasAuthorship W2904507906A5039826235 @default.
- W2904507906 hasAuthorship W2904507906A5050556274 @default.
- W2904507906 hasBestOaLocation W29045079061 @default.
- W2904507906 hasConcept C118552586 @default.
- W2904507906 hasConcept C119857082 @default.
- W2904507906 hasConcept C12267149 @default.
- W2904507906 hasConcept C134362201 @default.
- W2904507906 hasConcept C139719470 @default.
- W2904507906 hasConcept C151956035 @default.
- W2904507906 hasConcept C154945302 @default.
- W2904507906 hasConcept C15744967 @default.
- W2904507906 hasConcept C162324750 @default.
- W2904507906 hasConcept C169258074 @default.
- W2904507906 hasConcept C2776867660 @default.
- W2904507906 hasConcept C41008148 @default.
- W2904507906 hasConcept C52001869 @default.
- W2904507906 hasConcept C558461103 @default.
- W2904507906 hasConcept C70410870 @default.
- W2904507906 hasConcept C71924100 @default.
- W2904507906 hasConceptScore W2904507906C118552586 @default.
- W2904507906 hasConceptScore W2904507906C119857082 @default.
- W2904507906 hasConceptScore W2904507906C12267149 @default.
- W2904507906 hasConceptScore W2904507906C134362201 @default.
- W2904507906 hasConceptScore W2904507906C139719470 @default.
- W2904507906 hasConceptScore W2904507906C151956035 @default.
- W2904507906 hasConceptScore W2904507906C154945302 @default.
- W2904507906 hasConceptScore W2904507906C15744967 @default.
- W2904507906 hasConceptScore W2904507906C162324750 @default.
- W2904507906 hasConceptScore W2904507906C169258074 @default.
- W2904507906 hasConceptScore W2904507906C2776867660 @default.
- W2904507906 hasConceptScore W2904507906C41008148 @default.
- W2904507906 hasConceptScore W2904507906C52001869 @default.
- W2904507906 hasConceptScore W2904507906C558461103 @default.
- W2904507906 hasConceptScore W2904507906C70410870 @default.
- W2904507906 hasConceptScore W2904507906C71924100 @default.
- W2904507906 hasLocation W29045079061 @default.
- W2904507906 hasOpenAccess W2904507906 @default.
- W2904507906 hasPrimaryLocation W29045079061 @default.
- W2904507906 hasRelatedWork W2985924212 @default.
- W2904507906 hasRelatedWork W3004984807 @default.
- W2904507906 hasRelatedWork W3168994312 @default.
- W2904507906 hasRelatedWork W3195168932 @default.
- W2904507906 hasRelatedWork W4221021152 @default.
- W2904507906 hasRelatedWork W4281846282 @default.
- W2904507906 hasRelatedWork W4283734589 @default.
- W2904507906 hasRelatedWork W4321636153 @default.
- W2904507906 hasRelatedWork W4377964522 @default.
- W2904507906 hasRelatedWork W4383535405 @default.
- W2904507906 hasVolume "16" @default.
- W2904507906 isParatext "false" @default.
- W2904507906 isRetracted "false" @default.
- W2904507906 magId "2904507906" @default.
- W2904507906 workType "article" @default.