Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904509300> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2904509300 endingPage "673" @default.
- W2904509300 startingPage "665" @default.
- W2904509300 abstract "Clustering is an important task in machine learning and data mining. Due to various applications that use clustering, numerous clustering methods were proposed. One well-known, simple, and widely used clustering algorithm is k-means. The main problem of this algorithm is its tendency of getting trapped into local minimum because it does not have any kind of global search. Clustering is a hard optimization problem, and swarm intelligence stochastic optimization algorithms are proved to be successful for such tasks. In this paper, we propose recent swarm intelligence elephant herding optimization algorithm for data clustering. Local search of the elephant herding optimization algorithm was improved by k-means. The proposed method was tested on six benchmark datasets and compared to other methods from literature. Based on the obtained results it can be concluded that the proposed method finds better clusters when silhouette score is used as the quality measure." @default.
- W2904509300 created "2018-12-22" @default.
- W2904509300 creator A5008685555 @default.
- W2904509300 creator A5034154657 @default.
- W2904509300 creator A5050579174 @default.
- W2904509300 creator A5065227018 @default.
- W2904509300 creator A5067245090 @default.
- W2904509300 date "2018-12-15" @default.
- W2904509300 modified "2023-09-23" @default.
- W2904509300 title "Combined Elephant Herding Optimization Algorithm with K-means for Data Clustering" @default.
- W2904509300 cites W1159302035 @default.
- W2904509300 cites W1523741643 @default.
- W2904509300 cites W1562272194 @default.
- W2904509300 cites W1991359419 @default.
- W2904509300 cites W2019645756 @default.
- W2904509300 cites W2064663555 @default.
- W2904509300 cites W2069914810 @default.
- W2904509300 cites W2126726678 @default.
- W2904509300 cites W2264043868 @default.
- W2904509300 cites W2411820260 @default.
- W2904509300 cites W2506530651 @default.
- W2904509300 cites W2524269135 @default.
- W2904509300 cites W2557211773 @default.
- W2904509300 cites W2563442283 @default.
- W2904509300 cites W2588164337 @default.
- W2904509300 cites W2605363064 @default.
- W2904509300 cites W2771167666 @default.
- W2904509300 cites W2771523178 @default.
- W2904509300 cites W2784307518 @default.
- W2904509300 cites W2964283450 @default.
- W2904509300 cites W341125965 @default.
- W2904509300 doi "https://doi.org/10.1007/978-981-13-1747-7_65" @default.
- W2904509300 hasPublicationYear "2018" @default.
- W2904509300 type Work @default.
- W2904509300 sameAs 2904509300 @default.
- W2904509300 citedByCount "7" @default.
- W2904509300 countsByYear W29045093002018 @default.
- W2904509300 countsByYear W29045093002019 @default.
- W2904509300 countsByYear W29045093002020 @default.
- W2904509300 countsByYear W29045093002021 @default.
- W2904509300 countsByYear W29045093002022 @default.
- W2904509300 crossrefType "book-chapter" @default.
- W2904509300 hasAuthorship W2904509300A5008685555 @default.
- W2904509300 hasAuthorship W2904509300A5034154657 @default.
- W2904509300 hasAuthorship W2904509300A5050579174 @default.
- W2904509300 hasAuthorship W2904509300A5065227018 @default.
- W2904509300 hasAuthorship W2904509300A5067245090 @default.
- W2904509300 hasConcept C104047586 @default.
- W2904509300 hasConcept C11413529 @default.
- W2904509300 hasConcept C119487961 @default.
- W2904509300 hasConcept C124101348 @default.
- W2904509300 hasConcept C13280743 @default.
- W2904509300 hasConcept C154945302 @default.
- W2904509300 hasConcept C177605951 @default.
- W2904509300 hasConcept C185798385 @default.
- W2904509300 hasConcept C205649164 @default.
- W2904509300 hasConcept C33704608 @default.
- W2904509300 hasConcept C41008148 @default.
- W2904509300 hasConcept C73555534 @default.
- W2904509300 hasConcept C85617194 @default.
- W2904509300 hasConcept C94641424 @default.
- W2904509300 hasConcept C97137747 @default.
- W2904509300 hasConceptScore W2904509300C104047586 @default.
- W2904509300 hasConceptScore W2904509300C11413529 @default.
- W2904509300 hasConceptScore W2904509300C119487961 @default.
- W2904509300 hasConceptScore W2904509300C124101348 @default.
- W2904509300 hasConceptScore W2904509300C13280743 @default.
- W2904509300 hasConceptScore W2904509300C154945302 @default.
- W2904509300 hasConceptScore W2904509300C177605951 @default.
- W2904509300 hasConceptScore W2904509300C185798385 @default.
- W2904509300 hasConceptScore W2904509300C205649164 @default.
- W2904509300 hasConceptScore W2904509300C33704608 @default.
- W2904509300 hasConceptScore W2904509300C41008148 @default.
- W2904509300 hasConceptScore W2904509300C73555534 @default.
- W2904509300 hasConceptScore W2904509300C85617194 @default.
- W2904509300 hasConceptScore W2904509300C94641424 @default.
- W2904509300 hasConceptScore W2904509300C97137747 @default.
- W2904509300 hasLocation W29045093001 @default.
- W2904509300 hasOpenAccess W2904509300 @default.
- W2904509300 hasPrimaryLocation W29045093001 @default.
- W2904509300 hasRelatedWork W2036503911 @default.
- W2904509300 hasRelatedWork W2163563073 @default.
- W2904509300 hasRelatedWork W2165695836 @default.
- W2904509300 hasRelatedWork W2181939267 @default.
- W2904509300 hasRelatedWork W2355328234 @default.
- W2904509300 hasRelatedWork W2376783642 @default.
- W2904509300 hasRelatedWork W2970954390 @default.
- W2904509300 hasRelatedWork W3168768270 @default.
- W2904509300 hasRelatedWork W37188521 @default.
- W2904509300 hasRelatedWork W4310575853 @default.
- W2904509300 isParatext "false" @default.
- W2904509300 isRetracted "false" @default.
- W2904509300 magId "2904509300" @default.
- W2904509300 workType "book-chapter" @default.