Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904509436> ?p ?o ?g. }
- W2904509436 endingPage "557" @default.
- W2904509436 startingPage "549" @default.
- W2904509436 abstract "Abstract Early and accurate disease detection is essential for implementing timely disease management practices. Current disease detection tactics, like visual detection through scouting, are labor intensive, expensive, requires a level of expertise in pest identification, and, may result in subjective disease identification. Diagnosis based on visual symptoms is often compromised by the inability to differentiate between similar symptoms caused by different biotic and abiotic factors. In this paper, an automated early disease detection technique for avocado trees is presented and evaluated. This remote sensing technique can detect an important avocado disease, the laurel wilt (Lw) disease, and differentiate it from healthy trees (H), trees infected by phytophthora root rot (Prr), and trees with iron (Fe) and nitrogen (N) deficiencies. Detection of Lw disease in avocado trees, in early stage, is very difficult, because it has similar symptoms with other stress factors such as nutrient deficiency, salt damage, phytophthora root rot, etc. The proposed disease detection procedure contains several steps including image acquisition, image pre-processing, image segmentation, feature extraction and classification. For image acquisition, two cameras were utilized and evaluated: (i) a Tetracamera (6 bands Tetracam) and (ii) a modified Canon camera (3 bands); and two classification methods were studied: (a) neural network multilayer perceptron (MLP), and (ii) K- nearest neighbors, to detect Lw in asymptomatic stage and in late (symptomatic) stage. Additionally, two segmentation methods, region of interest (OVROI) and polygon region of interest (PROI), were utilized. The MLP classification method with the Tetracam was able to successfully detect Lw with an accuracy of 99% in asymptomatic (early) stage. Hence, low-cost remote technique can be utilized to differentiate healthy and unhealthy plants." @default.
- W2904509436 created "2018-12-22" @default.
- W2904509436 creator A5037840997 @default.
- W2904509436 creator A5048618416 @default.
- W2904509436 creator A5056337018 @default.
- W2904509436 creator A5087678582 @default.
- W2904509436 date "2019-01-01" @default.
- W2904509436 modified "2023-10-17" @default.
- W2904509436 title "A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses" @default.
- W2904509436 cites W1857997370 @default.
- W2904509436 cites W1968378357 @default.
- W2904509436 cites W1974047452 @default.
- W2904509436 cites W1974093345 @default.
- W2904509436 cites W1982523069 @default.
- W2904509436 cites W1992111150 @default.
- W2904509436 cites W2003511339 @default.
- W2904509436 cites W2032144267 @default.
- W2904509436 cites W2035866593 @default.
- W2904509436 cites W2035941112 @default.
- W2904509436 cites W2041636156 @default.
- W2904509436 cites W2042795904 @default.
- W2904509436 cites W2051103995 @default.
- W2904509436 cites W2056432274 @default.
- W2904509436 cites W2059529679 @default.
- W2904509436 cites W2062946716 @default.
- W2904509436 cites W2075786226 @default.
- W2904509436 cites W2081544115 @default.
- W2904509436 cites W2087685837 @default.
- W2904509436 cites W2098188176 @default.
- W2904509436 cites W2112257525 @default.
- W2904509436 cites W2113631068 @default.
- W2904509436 cites W2119445186 @default.
- W2904509436 cites W2119703736 @default.
- W2904509436 cites W2130794164 @default.
- W2904509436 cites W2140303623 @default.
- W2904509436 cites W2143198216 @default.
- W2904509436 cites W2144588963 @default.
- W2904509436 cites W2144841545 @default.
- W2904509436 cites W2155633705 @default.
- W2904509436 cites W2157547985 @default.
- W2904509436 cites W2159961845 @default.
- W2904509436 cites W2162772680 @default.
- W2904509436 cites W2172009270 @default.
- W2904509436 cites W2176793733 @default.
- W2904509436 cites W2219964536 @default.
- W2904509436 cites W2296006147 @default.
- W2904509436 cites W2896292343 @default.
- W2904509436 doi "https://doi.org/10.1016/j.compag.2018.12.018" @default.
- W2904509436 hasPublicationYear "2019" @default.
- W2904509436 type Work @default.
- W2904509436 sameAs 2904509436 @default.
- W2904509436 citedByCount "74" @default.
- W2904509436 countsByYear W29045094362019 @default.
- W2904509436 countsByYear W29045094362020 @default.
- W2904509436 countsByYear W29045094362021 @default.
- W2904509436 countsByYear W29045094362022 @default.
- W2904509436 countsByYear W29045094362023 @default.
- W2904509436 crossrefType "journal-article" @default.
- W2904509436 hasAuthorship W2904509436A5037840997 @default.
- W2904509436 hasAuthorship W2904509436A5048618416 @default.
- W2904509436 hasAuthorship W2904509436A5056337018 @default.
- W2904509436 hasAuthorship W2904509436A5087678582 @default.
- W2904509436 hasBestOaLocation W29045094361 @default.
- W2904509436 hasConcept C104317684 @default.
- W2904509436 hasConcept C132215390 @default.
- W2904509436 hasConcept C143590824 @default.
- W2904509436 hasConcept C144027150 @default.
- W2904509436 hasConcept C146926016 @default.
- W2904509436 hasConcept C18903297 @default.
- W2904509436 hasConcept C205649164 @default.
- W2904509436 hasConcept C2776678335 @default.
- W2904509436 hasConcept C39432304 @default.
- W2904509436 hasConcept C55493867 @default.
- W2904509436 hasConcept C62649853 @default.
- W2904509436 hasConcept C86803240 @default.
- W2904509436 hasConcept C89519541 @default.
- W2904509436 hasConceptScore W2904509436C104317684 @default.
- W2904509436 hasConceptScore W2904509436C132215390 @default.
- W2904509436 hasConceptScore W2904509436C143590824 @default.
- W2904509436 hasConceptScore W2904509436C144027150 @default.
- W2904509436 hasConceptScore W2904509436C146926016 @default.
- W2904509436 hasConceptScore W2904509436C18903297 @default.
- W2904509436 hasConceptScore W2904509436C205649164 @default.
- W2904509436 hasConceptScore W2904509436C2776678335 @default.
- W2904509436 hasConceptScore W2904509436C39432304 @default.
- W2904509436 hasConceptScore W2904509436C55493867 @default.
- W2904509436 hasConceptScore W2904509436C62649853 @default.
- W2904509436 hasConceptScore W2904509436C86803240 @default.
- W2904509436 hasConceptScore W2904509436C89519541 @default.
- W2904509436 hasFunder F4320312834 @default.
- W2904509436 hasFunder F4320313948 @default.
- W2904509436 hasLocation W29045094361 @default.
- W2904509436 hasOpenAccess W2904509436 @default.
- W2904509436 hasPrimaryLocation W29045094361 @default.
- W2904509436 hasRelatedWork W1988181347 @default.
- W2904509436 hasRelatedWork W2051775778 @default.
- W2904509436 hasRelatedWork W2058724514 @default.
- W2904509436 hasRelatedWork W2116335821 @default.