Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904533134> ?p ?o ?g. }
- W2904533134 endingPage "103" @default.
- W2904533134 startingPage "79" @default.
- W2904533134 abstract "The main objective of the present study was to investigate land subsidence phenomena and prepare a land subsidence map using spatio-temporal analysis of groundwater resources, remote sensing techniques and data mining methods. The methodology was implemented at the wider plain area extending northwest of Farsala town, Thessaly, Greece, covering an area of approximately 145 Km2. In order to estimate the spatio-temporal trend concerning groundwater level the non-parametric Mann–Kendall test and Sen’s Slope estimator were applied, whereas a set of Synthetic Aperture Radar images, processed with the Persistent Scatterer Interferometry technique, were evaluated in order to estimate the spatial and temporal patterns of ground deformation. In a test site where ground deformation rate values derived by the analysis of SAR images, Support Vector Machines was utilized to predict the subsidence deformation rate based on three variables, namely: thickness of loose deposits, the Sen’s Slope value of groundwater trend and the Compression Index of the formation covering the area of research. Based on the Support Vector Machine model, a land subsidence map was then produced for the entire research area. The outcomes of the study indicated a strong relation between the thickness of the loose deposits and the deformation subsidence rate and a clear trend between the subsidence deformation rate and the groundwater fluctuation. The r square value for the validation dataset within the test site was estimated to be 0.75. The land subsidence map produced by the Support Vector Machine model was validated by field surveys and measurements and showed good predictive performance. In conclusion, the subsidence model proposed in this study allows the accurate identification of surface deformations and can be helpful for the local authorities and government agencies to take measures before the evolution of severe subsidence phenomena and therefore for timely protection of the affected areas." @default.
- W2904533134 created "2018-12-22" @default.
- W2904533134 creator A5021423384 @default.
- W2904533134 creator A5056283943 @default.
- W2904533134 creator A5074740921 @default.
- W2904533134 date "2018-12-13" @default.
- W2904533134 modified "2023-09-25" @default.
- W2904533134 title "Land Subsidence Modelling Using Data Mining Techniques. The Case Study of Western Thessaly, Greece" @default.
- W2904533134 cites W1964357740 @default.
- W2904533134 cites W1967326611 @default.
- W2904533134 cites W1970302608 @default.
- W2904533134 cites W1970673507 @default.
- W2904533134 cites W1972887664 @default.
- W2904533134 cites W1975649612 @default.
- W2904533134 cites W1978678445 @default.
- W2904533134 cites W1981657392 @default.
- W2904533134 cites W1987602585 @default.
- W2904533134 cites W1987684768 @default.
- W2904533134 cites W1997097032 @default.
- W2904533134 cites W2005751867 @default.
- W2904533134 cites W2007828059 @default.
- W2904533134 cites W2012118327 @default.
- W2904533134 cites W2013364606 @default.
- W2904533134 cites W2018764772 @default.
- W2904533134 cites W2020524535 @default.
- W2904533134 cites W2023203753 @default.
- W2904533134 cites W2039767034 @default.
- W2904533134 cites W2044298539 @default.
- W2904533134 cites W2047029664 @default.
- W2904533134 cites W2056872149 @default.
- W2904533134 cites W2059997383 @default.
- W2904533134 cites W2061640368 @default.
- W2904533134 cites W2063437935 @default.
- W2904533134 cites W2065989874 @default.
- W2904533134 cites W2076884974 @default.
- W2904533134 cites W2099073972 @default.
- W2904533134 cites W2102596750 @default.
- W2904533134 cites W2110628907 @default.
- W2904533134 cites W2110678167 @default.
- W2904533134 cites W2125848133 @default.
- W2904533134 cites W2126951527 @default.
- W2904533134 cites W2129206142 @default.
- W2904533134 cites W2135815017 @default.
- W2904533134 cites W2137595065 @default.
- W2904533134 cites W2142607643 @default.
- W2904533134 cites W2147882638 @default.
- W2904533134 cites W2156909104 @default.
- W2904533134 cites W2162310313 @default.
- W2904533134 cites W2169165405 @default.
- W2904533134 cites W2169439425 @default.
- W2904533134 cites W2278079462 @default.
- W2904533134 cites W2318680928 @default.
- W2904533134 cites W2326457883 @default.
- W2904533134 cites W2411018322 @default.
- W2904533134 cites W2739671659 @default.
- W2904533134 cites W2741652751 @default.
- W2904533134 cites W4233518571 @default.
- W2904533134 cites W4234668320 @default.
- W2904533134 cites W4244347457 @default.
- W2904533134 cites W87030543 @default.
- W2904533134 doi "https://doi.org/10.1007/978-3-319-73383-8_4" @default.
- W2904533134 hasPublicationYear "2018" @default.
- W2904533134 type Work @default.
- W2904533134 sameAs 2904533134 @default.
- W2904533134 citedByCount "6" @default.
- W2904533134 countsByYear W29045331342020 @default.
- W2904533134 countsByYear W29045331342021 @default.
- W2904533134 countsByYear W29045331342023 @default.
- W2904533134 crossrefType "book-chapter" @default.
- W2904533134 hasAuthorship W2904533134A5021423384 @default.
- W2904533134 hasAuthorship W2904533134A5056283943 @default.
- W2904533134 hasAuthorship W2904533134A5074740921 @default.
- W2904533134 hasConcept C100260852 @default.
- W2904533134 hasConcept C109007969 @default.
- W2904533134 hasConcept C111368507 @default.
- W2904533134 hasConcept C114793014 @default.
- W2904533134 hasConcept C127313418 @default.
- W2904533134 hasConcept C13280743 @default.
- W2904533134 hasConcept C180851071 @default.
- W2904533134 hasConcept C187320778 @default.
- W2904533134 hasConcept C204366326 @default.
- W2904533134 hasConcept C22286887 @default.
- W2904533134 hasConcept C62649853 @default.
- W2904533134 hasConcept C76177295 @default.
- W2904533134 hasConcept C76886044 @default.
- W2904533134 hasConcept C87360688 @default.
- W2904533134 hasConceptScore W2904533134C100260852 @default.
- W2904533134 hasConceptScore W2904533134C109007969 @default.
- W2904533134 hasConceptScore W2904533134C111368507 @default.
- W2904533134 hasConceptScore W2904533134C114793014 @default.
- W2904533134 hasConceptScore W2904533134C127313418 @default.
- W2904533134 hasConceptScore W2904533134C13280743 @default.
- W2904533134 hasConceptScore W2904533134C180851071 @default.
- W2904533134 hasConceptScore W2904533134C187320778 @default.
- W2904533134 hasConceptScore W2904533134C204366326 @default.
- W2904533134 hasConceptScore W2904533134C22286887 @default.
- W2904533134 hasConceptScore W2904533134C62649853 @default.
- W2904533134 hasConceptScore W2904533134C76177295 @default.