Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904581126> ?p ?o ?g. }
- W2904581126 endingPage "678" @default.
- W2904581126 startingPage "668" @default.
- W2904581126 abstract "Abstract Mood disorders, including unipolar depression (UD) and bipolar disorder (BD), have become some of the commonest mental health disorders. The absence of diagnostic markers of BD can cause misdiagnosis of the disorder as UD on initial presentation. Short-term detection, which could be used in early detection and intervention, is desirable. This study proposed an approach for short-term detection of mood disorders based on elicited speech responses. Speech responses of participants were obtained through interviews by a clinician after participants viewed six emotion-eliciting videos. A domain adaptation method based on a hierarchical spectral clustering algorithm was proposed to adapt a labeled emotion database into a collected unlabeled mood database for alleviating the data bias problem in an emotion space. For modeling the local variation of emotions in each response, a convolutional neural network (CNN) with an attention mechanism was used to generate an emotion profile (EP) of each elicited speech response. Finally, long short-term memory (LSTM) was employed to characterize the temporal evolution of EPs of all six speech responses. Moreover, an attention model was applied to the LSTM network for highlighting pertinent speech responses to improve detection performance instead of treating all responses equally. For evaluation, this study elicited emotional speech data from 15 people with BD, 15 people with UD, and 15 healthy controls. Leave-one-group-out cross-validation was employed for the compiled database and proposed method. CNN- and LSTM-based attention models improved the mood disorder detection accuracy of the proposed method by approximately 11%. Furthermore, the proposed method achieved an overall detection accuracy of 75.56%, outperforming support-vector-machine- (62.22%) and CNN-based (66.67%) methods." @default.
- W2904581126 created "2018-12-22" @default.
- W2904581126 creator A5032582565 @default.
- W2904581126 creator A5042664276 @default.
- W2904581126 creator A5065699174 @default.
- W2904581126 date "2019-04-01" @default.
- W2904581126 modified "2023-09-27" @default.
- W2904581126 title "Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses" @default.
- W2904581126 cites W1567768485 @default.
- W2904581126 cites W1965294147 @default.
- W2904581126 cites W1989085243 @default.
- W2904581126 cites W1989185482 @default.
- W2904581126 cites W1989639247 @default.
- W2904581126 cites W2005069458 @default.
- W2904581126 cites W2018096495 @default.
- W2904581126 cites W2027309689 @default.
- W2904581126 cites W2041984293 @default.
- W2904581126 cites W2043929537 @default.
- W2904581126 cites W2044188769 @default.
- W2904581126 cites W204854131 @default.
- W2904581126 cites W2058819080 @default.
- W2904581126 cites W2059912118 @default.
- W2904581126 cites W2064675550 @default.
- W2904581126 cites W2074788634 @default.
- W2904581126 cites W2084502373 @default.
- W2904581126 cites W2087618018 @default.
- W2904581126 cites W2096297019 @default.
- W2904581126 cites W2153722516 @default.
- W2904581126 cites W2154024118 @default.
- W2904581126 cites W2164974096 @default.
- W2904581126 cites W2168333282 @default.
- W2904581126 cites W2308837722 @default.
- W2904581126 cites W2508416068 @default.
- W2904581126 cites W2588299441 @default.
- W2904581126 cites W2589723205 @default.
- W2904581126 cites W2765906447 @default.
- W2904581126 cites W2792108131 @default.
- W2904581126 doi "https://doi.org/10.1016/j.patcog.2018.12.016" @default.
- W2904581126 hasPublicationYear "2019" @default.
- W2904581126 type Work @default.
- W2904581126 sameAs 2904581126 @default.
- W2904581126 citedByCount "39" @default.
- W2904581126 countsByYear W29045811262019 @default.
- W2904581126 countsByYear W29045811262020 @default.
- W2904581126 countsByYear W29045811262021 @default.
- W2904581126 countsByYear W29045811262022 @default.
- W2904581126 countsByYear W29045811262023 @default.
- W2904581126 crossrefType "journal-article" @default.
- W2904581126 hasAuthorship W2904581126A5032582565 @default.
- W2904581126 hasAuthorship W2904581126A5042664276 @default.
- W2904581126 hasAuthorship W2904581126A5065699174 @default.
- W2904581126 hasConcept C118552586 @default.
- W2904581126 hasConcept C121332964 @default.
- W2904581126 hasConcept C133488467 @default.
- W2904581126 hasConcept C147168706 @default.
- W2904581126 hasConcept C154945302 @default.
- W2904581126 hasConcept C15744967 @default.
- W2904581126 hasConcept C169760540 @default.
- W2904581126 hasConcept C169900460 @default.
- W2904581126 hasConcept C179226034 @default.
- W2904581126 hasConcept C180747234 @default.
- W2904581126 hasConcept C21963081 @default.
- W2904581126 hasConcept C2780733359 @default.
- W2904581126 hasConcept C28490314 @default.
- W2904581126 hasConcept C41008148 @default.
- W2904581126 hasConcept C50644808 @default.
- W2904581126 hasConcept C61797465 @default.
- W2904581126 hasConcept C62520636 @default.
- W2904581126 hasConcept C81363708 @default.
- W2904581126 hasConceptScore W2904581126C118552586 @default.
- W2904581126 hasConceptScore W2904581126C121332964 @default.
- W2904581126 hasConceptScore W2904581126C133488467 @default.
- W2904581126 hasConceptScore W2904581126C147168706 @default.
- W2904581126 hasConceptScore W2904581126C154945302 @default.
- W2904581126 hasConceptScore W2904581126C15744967 @default.
- W2904581126 hasConceptScore W2904581126C169760540 @default.
- W2904581126 hasConceptScore W2904581126C169900460 @default.
- W2904581126 hasConceptScore W2904581126C179226034 @default.
- W2904581126 hasConceptScore W2904581126C180747234 @default.
- W2904581126 hasConceptScore W2904581126C21963081 @default.
- W2904581126 hasConceptScore W2904581126C2780733359 @default.
- W2904581126 hasConceptScore W2904581126C28490314 @default.
- W2904581126 hasConceptScore W2904581126C41008148 @default.
- W2904581126 hasConceptScore W2904581126C50644808 @default.
- W2904581126 hasConceptScore W2904581126C61797465 @default.
- W2904581126 hasConceptScore W2904581126C62520636 @default.
- W2904581126 hasConceptScore W2904581126C81363708 @default.
- W2904581126 hasLocation W29045811261 @default.
- W2904581126 hasOpenAccess W2904581126 @default.
- W2904581126 hasPrimaryLocation W29045811261 @default.
- W2904581126 hasRelatedWork W1974577449 @default.
- W2904581126 hasRelatedWork W2074865958 @default.
- W2904581126 hasRelatedWork W2332462943 @default.
- W2904581126 hasRelatedWork W2904581126 @default.
- W2904581126 hasRelatedWork W2917883546 @default.
- W2904581126 hasRelatedWork W2979437663 @default.
- W2904581126 hasRelatedWork W3016404724 @default.
- W2904581126 hasRelatedWork W3155820633 @default.