Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904608203> ?p ?o ?g. }
- W2904608203 abstract "The methods for variable importance measures and feature selection in the task of classification/regression in data mining and Big Data enable the removal of noise caused by irrelevant or redundant variables, the reduction of computational cost in the construction of models and facilitate the understanding of these models. This paper presents a proposal to measure the importance of the input variables in a classification/regression problem, taking as input the solutions evaluated by a wrapper and the performance information (quality of classification expressed for example in accuracy, precision, recall, F measure, among others) associated with each of these solutions. The proposed method quantifies the effect on the classification/regression performance produced by the presence or absence of each input variable in the subsets evaluated by the wrapper. This measure has the advantage of being specific for each classifier, which makes it possible to differentiate the effects each input variable can generate depending on the model built. The proposed method was evaluated using the results of three wrappers - one based on genetic algorithms (GA), another on particle swarm optimization (PSO), and a new proposal based on covering arrays (CA) - and compared with two filters and the variable importance in Random Forest. The experiments were performed on three classifiers (Naive Bayes, Random Forest and Multi-Layer Perception) and seven data sets from the UCI repository. The comparisons were made using Friedman’s Aligned Ranks test and the results indicate that the proposed measure stands out for maintaining in the first input variables a higher quality in the classification, approximating better to the variables found by the feature selection methods." @default.
- W2904608203 created "2018-12-22" @default.
- W2904608203 creator A5006638466 @default.
- W2904608203 creator A5040092753 @default.
- W2904608203 creator A5056262406 @default.
- W2904608203 creator A5079006360 @default.
- W2904608203 creator A5085030222 @default.
- W2904608203 date "2018-01-01" @default.
- W2904608203 modified "2023-10-18" @default.
- W2904608203 title "A Proposal to Estimate the Variable Importance Measures in Predictive Models Using Results from a Wrapper" @default.
- W2904608203 cites W1875061881 @default.
- W2904608203 cites W2005180871 @default.
- W2904608203 cites W2013885787 @default.
- W2904608203 cites W2017337590 @default.
- W2904608203 cites W2034797342 @default.
- W2904608203 cites W2037575202 @default.
- W2904608203 cites W2101753511 @default.
- W2904608203 cites W2102636708 @default.
- W2904608203 cites W2125213524 @default.
- W2904608203 cites W2165466912 @default.
- W2904608203 cites W2167101736 @default.
- W2904608203 cites W2181210596 @default.
- W2904608203 cites W2347187575 @default.
- W2904608203 cites W2478827444 @default.
- W2904608203 cites W2508160469 @default.
- W2904608203 cites W2562381368 @default.
- W2904608203 cites W2726539084 @default.
- W2904608203 cites W4211023471 @default.
- W2904608203 cites W4256669726 @default.
- W2904608203 cites W590241356 @default.
- W2904608203 doi "https://doi.org/10.1007/978-3-030-05918-7_33" @default.
- W2904608203 hasPublicationYear "2018" @default.
- W2904608203 type Work @default.
- W2904608203 sameAs 2904608203 @default.
- W2904608203 citedByCount "2" @default.
- W2904608203 countsByYear W29046082032019 @default.
- W2904608203 countsByYear W29046082032020 @default.
- W2904608203 crossrefType "book-chapter" @default.
- W2904608203 hasAuthorship W2904608203A5006638466 @default.
- W2904608203 hasAuthorship W2904608203A5040092753 @default.
- W2904608203 hasAuthorship W2904608203A5056262406 @default.
- W2904608203 hasAuthorship W2904608203A5079006360 @default.
- W2904608203 hasAuthorship W2904608203A5085030222 @default.
- W2904608203 hasConcept C105795698 @default.
- W2904608203 hasConcept C119857082 @default.
- W2904608203 hasConcept C12267149 @default.
- W2904608203 hasConcept C124101348 @default.
- W2904608203 hasConcept C134306372 @default.
- W2904608203 hasConcept C148483581 @default.
- W2904608203 hasConcept C152877465 @default.
- W2904608203 hasConcept C153180895 @default.
- W2904608203 hasConcept C154945302 @default.
- W2904608203 hasConcept C169258074 @default.
- W2904608203 hasConcept C182365436 @default.
- W2904608203 hasConcept C2780009758 @default.
- W2904608203 hasConcept C33923547 @default.
- W2904608203 hasConcept C41008148 @default.
- W2904608203 hasConcept C52001869 @default.
- W2904608203 hasConcept C83546350 @default.
- W2904608203 hasConcept C85617194 @default.
- W2904608203 hasConcept C95623464 @default.
- W2904608203 hasConceptScore W2904608203C105795698 @default.
- W2904608203 hasConceptScore W2904608203C119857082 @default.
- W2904608203 hasConceptScore W2904608203C12267149 @default.
- W2904608203 hasConceptScore W2904608203C124101348 @default.
- W2904608203 hasConceptScore W2904608203C134306372 @default.
- W2904608203 hasConceptScore W2904608203C148483581 @default.
- W2904608203 hasConceptScore W2904608203C152877465 @default.
- W2904608203 hasConceptScore W2904608203C153180895 @default.
- W2904608203 hasConceptScore W2904608203C154945302 @default.
- W2904608203 hasConceptScore W2904608203C169258074 @default.
- W2904608203 hasConceptScore W2904608203C182365436 @default.
- W2904608203 hasConceptScore W2904608203C2780009758 @default.
- W2904608203 hasConceptScore W2904608203C33923547 @default.
- W2904608203 hasConceptScore W2904608203C41008148 @default.
- W2904608203 hasConceptScore W2904608203C52001869 @default.
- W2904608203 hasConceptScore W2904608203C83546350 @default.
- W2904608203 hasConceptScore W2904608203C85617194 @default.
- W2904608203 hasConceptScore W2904608203C95623464 @default.
- W2904608203 hasLocation W29046082031 @default.
- W2904608203 hasOpenAccess W2904608203 @default.
- W2904608203 hasPrimaryLocation W29046082031 @default.
- W2904608203 hasRelatedWork W1970134809 @default.
- W2904608203 hasRelatedWork W2017845276 @default.
- W2904608203 hasRelatedWork W2034370748 @default.
- W2904608203 hasRelatedWork W2089845169 @default.
- W2904608203 hasRelatedWork W2107523658 @default.
- W2904608203 hasRelatedWork W2127188713 @default.
- W2904608203 hasRelatedWork W2138048316 @default.
- W2904608203 hasRelatedWork W2169281690 @default.
- W2904608203 hasRelatedWork W2213053788 @default.
- W2904608203 hasRelatedWork W2512711170 @default.
- W2904608203 hasRelatedWork W2518421866 @default.
- W2904608203 hasRelatedWork W2557117995 @default.
- W2904608203 hasRelatedWork W2590983325 @default.
- W2904608203 hasRelatedWork W2742922252 @default.
- W2904608203 hasRelatedWork W2797717124 @default.
- W2904608203 hasRelatedWork W2809988976 @default.
- W2904608203 hasRelatedWork W2889464031 @default.
- W2904608203 hasRelatedWork W2899553782 @default.