Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904610985> ?p ?o ?g. }
- W2904610985 endingPage "52" @default.
- W2904610985 startingPage "41" @default.
- W2904610985 abstract "Given the fierce competition between large companies, the sustainable supply chain has been recognized as a key component of corporate responsibility in recent years. Classification of suppliers can facilitate the selection of a suitable supplier for management, which saves time and costs for the company. Data envelopment analysis (DEA) has become one of the most frequently applied tools for measuring the relative efficiency of suppliers. Standard DEA models assume that the data are deterministic. But, in many real life applications not all inputs and/or outputs are deterministic, some could be stochastic. Additionally, existence of zero data in stochastic DEA models can be a new assumption in performance evaluation of suppliers. In this paper we proposed a novel super-efficiency stochastic DEA model for measuring relative efficiency of suppliers in presence of zero data. By proposed model, all suppliers are classified into two efficient and inefficient groups based on their efficiency score. Then, to predict group membership of new supplier, a novel Stochastic MIP model is presented. The results of this study indicate the high accuracy of prediction by the proposed model. In order to application of the proposed approach, a case study is presented." @default.
- W2904610985 created "2018-12-22" @default.
- W2904610985 creator A5022028411 @default.
- W2904610985 creator A5029109995 @default.
- W2904610985 date "2019-04-01" @default.
- W2904610985 modified "2023-10-13" @default.
- W2904610985 title "Predicting group membership of sustainable suppliers via data envelopment analysis and discriminant analysis" @default.
- W2904610985 cites W1963497305 @default.
- W2904610985 cites W1971341831 @default.
- W2904610985 cites W1972500249 @default.
- W2904610985 cites W1974538839 @default.
- W2904610985 cites W1979609857 @default.
- W2904610985 cites W1988349170 @default.
- W2904610985 cites W1989056438 @default.
- W2904610985 cites W2002726899 @default.
- W2904610985 cites W2003800557 @default.
- W2904610985 cites W2006725660 @default.
- W2904610985 cites W2007838263 @default.
- W2904610985 cites W2009147707 @default.
- W2904610985 cites W2017259293 @default.
- W2904610985 cites W2022376719 @default.
- W2904610985 cites W2022886063 @default.
- W2904610985 cites W2029070506 @default.
- W2904610985 cites W2036421348 @default.
- W2904610985 cites W2037361561 @default.
- W2904610985 cites W2049766458 @default.
- W2904610985 cites W2053049526 @default.
- W2904610985 cites W2060745243 @default.
- W2904610985 cites W2069887695 @default.
- W2904610985 cites W2069967321 @default.
- W2904610985 cites W2076452041 @default.
- W2904610985 cites W2080368331 @default.
- W2904610985 cites W2104419632 @default.
- W2904610985 cites W2107329360 @default.
- W2904610985 cites W2110250287 @default.
- W2904610985 cites W2124535906 @default.
- W2904610985 cites W2124934838 @default.
- W2904610985 cites W2133463065 @default.
- W2904610985 cites W2143788402 @default.
- W2904610985 cites W2146932957 @default.
- W2904610985 cites W2151255796 @default.
- W2904610985 cites W2156963826 @default.
- W2904610985 cites W2162309218 @default.
- W2904610985 cites W2164308914 @default.
- W2904610985 cites W2164374608 @default.
- W2904610985 cites W2185097968 @default.
- W2904610985 cites W2269841700 @default.
- W2904610985 cites W2322814912 @default.
- W2904610985 cites W2470676633 @default.
- W2904610985 cites W2521154844 @default.
- W2904610985 cites W2572336368 @default.
- W2904610985 cites W2728024527 @default.
- W2904610985 cites W2738457937 @default.
- W2904610985 cites W3123736595 @default.
- W2904610985 cites W3124129938 @default.
- W2904610985 cites W2335504037 @default.
- W2904610985 doi "https://doi.org/10.1016/j.spc.2018.12.004" @default.
- W2904610985 hasPublicationYear "2019" @default.
- W2904610985 type Work @default.
- W2904610985 sameAs 2904610985 @default.
- W2904610985 citedByCount "32" @default.
- W2904610985 countsByYear W29046109852019 @default.
- W2904610985 countsByYear W29046109852020 @default.
- W2904610985 countsByYear W29046109852021 @default.
- W2904610985 countsByYear W29046109852022 @default.
- W2904610985 countsByYear W29046109852023 @default.
- W2904610985 crossrefType "journal-article" @default.
- W2904610985 hasAuthorship W2904610985A5022028411 @default.
- W2904610985 hasAuthorship W2904610985A5029109995 @default.
- W2904610985 hasConcept C10138342 @default.
- W2904610985 hasConcept C105795698 @default.
- W2904610985 hasConcept C108713360 @default.
- W2904610985 hasConcept C126255220 @default.
- W2904610985 hasConcept C127491075 @default.
- W2904610985 hasConcept C144133560 @default.
- W2904610985 hasConcept C149782125 @default.
- W2904610985 hasConcept C154945302 @default.
- W2904610985 hasConcept C162324750 @default.
- W2904610985 hasConcept C162853370 @default.
- W2904610985 hasConcept C17648541 @default.
- W2904610985 hasConcept C182306322 @default.
- W2904610985 hasConcept C185429906 @default.
- W2904610985 hasConcept C18903297 @default.
- W2904610985 hasConcept C22088475 @default.
- W2904610985 hasConcept C26517878 @default.
- W2904610985 hasConcept C33923547 @default.
- W2904610985 hasConcept C38652104 @default.
- W2904610985 hasConcept C41008148 @default.
- W2904610985 hasConcept C42475967 @default.
- W2904610985 hasConcept C69738355 @default.
- W2904610985 hasConcept C86803240 @default.
- W2904610985 hasConcept C91306197 @default.
- W2904610985 hasConceptScore W2904610985C10138342 @default.
- W2904610985 hasConceptScore W2904610985C105795698 @default.
- W2904610985 hasConceptScore W2904610985C108713360 @default.
- W2904610985 hasConceptScore W2904610985C126255220 @default.
- W2904610985 hasConceptScore W2904610985C127491075 @default.
- W2904610985 hasConceptScore W2904610985C144133560 @default.