Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904617901> ?p ?o ?g. }
- W2904617901 endingPage "e1006893" @default.
- W2904617901 startingPage "e1006893" @default.
- W2904617901 abstract "Neural activity exhibits a vast range of timescales that can be several fold larger than the membrane time constant of individual neurons. Two types of mechanisms have been proposed to explain this conundrum. One possibility is that large timescales are generated by a network mechanism based on positive feedback, but this hypothesis requires fine-tuning of the synaptic connections. A second possibility is that large timescales in the neural dynamics are inherited from large timescales of underlying biophysical processes, two prominent candidates being adaptive ionic currents and synaptic transmission. How the timescales of these processes influence the timescale of the network dynamics has however not been fully explored. To address this question, we analyze large networks of randomly connected excitatory and inhibitory units with additional degrees of freedom that correspond to adaptation or synaptic filtering. We determine the fixed points of the systems, their stability to perturbations and the corresponding dynamical timescales. Furthermore, we apply dynamical mean field theory to study the temporal statistics of the activity in the fluctuating regime, and examine how the adaptation and synaptic timescales transfer from individual units to the whole population. Our overarching finding is that synaptic filtering and adaptation in single neurons have very different effects at the network level. Unexpectedly, the macroscopic network dynamics do not inherit the large timescale present in adaptive currents. In contrast, the timescales of network activity increase proportionally to the time constant of the synaptic filter. Altogether, our study demonstrates that the timescales of different biophysical processes have different effects on the network level, so that the slow processes within individual neurons do not necessarily induce slow activity in large recurrent neural networks." @default.
- W2904617901 created "2018-12-22" @default.
- W2904617901 creator A5028433393 @default.
- W2904617901 creator A5058457117 @default.
- W2904617901 date "2019-03-21" @default.
- W2904617901 modified "2023-10-16" @default.
- W2904617901 title "Contrasting the effects of adaptation and synaptic filtering on the timescales of dynamics in recurrent networks" @default.
- W2904617901 cites W1485297825 @default.
- W2904617901 cites W1932143290 @default.
- W2904617901 cites W1965377078 @default.
- W2904617901 cites W1971123606 @default.
- W2904617901 cites W1972768882 @default.
- W2904617901 cites W1983533291 @default.
- W2904617901 cites W1989774907 @default.
- W2904617901 cites W1991630689 @default.
- W2904617901 cites W1992476998 @default.
- W2904617901 cites W2000470900 @default.
- W2904617901 cites W2002151621 @default.
- W2904617901 cites W2004547450 @default.
- W2904617901 cites W2011284579 @default.
- W2904617901 cites W2013155738 @default.
- W2904617901 cites W2016354087 @default.
- W2904617901 cites W2021044878 @default.
- W2904617901 cites W2025054170 @default.
- W2904617901 cites W2027802883 @default.
- W2904617901 cites W2036145275 @default.
- W2904617901 cites W2039042800 @default.
- W2904617901 cites W2042052682 @default.
- W2904617901 cites W2050840442 @default.
- W2904617901 cites W2060135032 @default.
- W2904617901 cites W2065286706 @default.
- W2904617901 cites W2066835186 @default.
- W2904617901 cites W2075068003 @default.
- W2904617901 cites W2081364575 @default.
- W2904617901 cites W2083883424 @default.
- W2904617901 cites W2087301801 @default.
- W2904617901 cites W2089024430 @default.
- W2904617901 cites W2089491278 @default.
- W2904617901 cites W2092472854 @default.
- W2904617901 cites W2097574751 @default.
- W2904617901 cites W2099231026 @default.
- W2904617901 cites W2101848767 @default.
- W2904617901 cites W2103594871 @default.
- W2904617901 cites W2104755093 @default.
- W2904617901 cites W2109447493 @default.
- W2904617901 cites W2112927743 @default.
- W2904617901 cites W2113345172 @default.
- W2904617901 cites W2125141513 @default.
- W2904617901 cites W2126007099 @default.
- W2904617901 cites W2126945096 @default.
- W2904617901 cites W2128589492 @default.
- W2904617901 cites W2129046573 @default.
- W2904617901 cites W2137761603 @default.
- W2904617901 cites W2139413555 @default.
- W2904617901 cites W2139630667 @default.
- W2904617901 cites W2139743247 @default.
- W2904617901 cites W2142329149 @default.
- W2904617901 cites W2153487752 @default.
- W2904617901 cites W2154034179 @default.
- W2904617901 cites W2162019295 @default.
- W2904617901 cites W2165150869 @default.
- W2904617901 cites W2167809052 @default.
- W2904617901 cites W2168248818 @default.
- W2904617901 cites W2168295097 @default.
- W2904617901 cites W2169519447 @default.
- W2904617901 cites W2384550918 @default.
- W2904617901 cites W2395157485 @default.
- W2904617901 cites W2520280309 @default.
- W2904617901 cites W2557964287 @default.
- W2904617901 cites W2725150524 @default.
- W2904617901 cites W2737218936 @default.
- W2904617901 cites W2740565985 @default.
- W2904617901 cites W2883380036 @default.
- W2904617901 cites W2949302013 @default.
- W2904617901 cites W2949357415 @default.
- W2904617901 cites W3098717203 @default.
- W2904617901 cites W3100077639 @default.
- W2904617901 cites W2067449620 @default.
- W2904617901 doi "https://doi.org/10.1371/journal.pcbi.1006893" @default.
- W2904617901 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6445477" @default.
- W2904617901 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30897092" @default.
- W2904617901 hasPublicationYear "2019" @default.
- W2904617901 type Work @default.
- W2904617901 sameAs 2904617901 @default.
- W2904617901 citedByCount "21" @default.
- W2904617901 countsByYear W29046179012019 @default.
- W2904617901 countsByYear W29046179012020 @default.
- W2904617901 countsByYear W29046179012021 @default.
- W2904617901 countsByYear W29046179012022 @default.
- W2904617901 countsByYear W29046179012023 @default.
- W2904617901 crossrefType "journal-article" @default.
- W2904617901 hasAuthorship W2904617901A5028433393 @default.
- W2904617901 hasAuthorship W2904617901A5058457117 @default.
- W2904617901 hasBestOaLocation W29046179011 @default.
- W2904617901 hasConcept C118615104 @default.
- W2904617901 hasConcept C121332964 @default.
- W2904617901 hasConcept C121864883 @default.
- W2904617901 hasConcept C123757187 @default.