Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904625209> ?p ?o ?g. }
- W2904625209 endingPage "193" @default.
- W2904625209 startingPage "181" @default.
- W2904625209 abstract "Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy Chun-Chiao Chuang,1,* Chih-Chi Cheng,1,* Pei-Ying Chen,1 Chieh Lo,1 Yi-Ning Chen,1 Min-Hsiung Shih,2,3 Chien-Wen Chang1 1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China; 2Research Center of Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan, Republic of China; 3Department of Photonics, National Chiao Tung University (NCTU), Hsinchu, 30010, Taiwan, Republic of China *These authors contributed equally to this work Purpose: A biocompatible nanocomplex system co-encapsulated with gold nanorods (AuNRs) and doxorubicin (DOX) was investigated for its potentials on the combined photothermal- and chemotherapy.Materials and methods: Hydrophobic AuNRs were synthesized by the hexadecyltrimethylammonium bromide (CTAB)-mediated seed growth method, and then, they received two-step surface modifications of polyethylene glycol (PEG) and dodecane. The AuNR/DOX/poly(lactic-co-glycolic acid) (PLGA) nanocomplexes were prepared by emulsifying DOX, AuNR, and PLGA into aqueous polyvinyl alcohol solution by sonication. Human serum albumin (HSA) was used to coat the nanocomplexes to afford HSA/AuNR/DOX–PLGA (HADP). Size and surface potential of the HADP nanocomplexes were determined by using a Zetasizer. Cytotoxicity and cellular uptake of the HADP were analyzed by using MTT assay and flow cytometry, respectively. In vitro anticancer effects of the HADP were studied on various cancer cell lines. To assess the therapeutic efficacy, CT26 tumor-bearing mice were intravenously administered with HADP nanocomplexes and laser treatments, followed by monitoring of the tumor growth and body weight.Results: Size and surface potential of the HADP nanocomplexes were 245.8 nm and -8.6 mV, respectively. Strong photothermal effects were verified on the AuNR-loaded PLGA nanoparticles (NPs) in vitro. Rapid and repeated drug release from the HADP nanocomplexes was successfully achieved by near-infrared (NIR) irradiations. HSA significantly promoted cellular uptake of the HADP nanocomplexes to murine colon cancer cells as demonstrated by cell imaging and flow cytometric studies. By combining photothermal and chemotherapy, the HADP nanocomplexes exhibited strong synergistic anticancer effects in vitro and in vivo.Conclusion: An NIR-triggered drug release system by encapsulating hydrophobic AuNR and DOX inside the PLGA NPs has been successfully prepared in this study. The HADP NPs show promising combined photothermal- and chemotherapeutic effects without inducing undesired side effects on a murine colon cancer animal model. Keywords: gold nanomaterials, photothermal therapy, triggered drug release, albumin, biodegradable nanoparticles " @default.
- W2904625209 created "2018-12-22" @default.
- W2904625209 creator A5000259177 @default.
- W2904625209 creator A5003997327 @default.
- W2904625209 creator A5012581417 @default.
- W2904625209 creator A5048286805 @default.
- W2904625209 creator A5048522866 @default.
- W2904625209 creator A5064913310 @default.
- W2904625209 creator A5075082467 @default.
- W2904625209 date "2018-12-01" @default.
- W2904625209 modified "2023-10-11" @default.
- W2904625209 title "Gold nanorod-encapsulated biodegradable polymeric matrix for combined photothermal and chemo-cancer therapy" @default.
- W2904625209 cites W1903778810 @default.
- W2904625209 cites W1965538863 @default.
- W2904625209 cites W1971455130 @default.
- W2904625209 cites W1975061847 @default.
- W2904625209 cites W1986293641 @default.
- W2904625209 cites W1999401096 @default.
- W2904625209 cites W2002090994 @default.
- W2904625209 cites W2002815709 @default.
- W2904625209 cites W2006919875 @default.
- W2904625209 cites W2012440525 @default.
- W2904625209 cites W2013875757 @default.
- W2904625209 cites W2018384936 @default.
- W2904625209 cites W2022849239 @default.
- W2904625209 cites W2025531782 @default.
- W2904625209 cites W2028204215 @default.
- W2904625209 cites W2028464008 @default.
- W2904625209 cites W2038717222 @default.
- W2904625209 cites W2038977078 @default.
- W2904625209 cites W2040835855 @default.
- W2904625209 cites W2041998484 @default.
- W2904625209 cites W2042565735 @default.
- W2904625209 cites W2046653887 @default.
- W2904625209 cites W2053026677 @default.
- W2904625209 cites W2055776993 @default.
- W2904625209 cites W2056101772 @default.
- W2904625209 cites W2059862524 @default.
- W2904625209 cites W2060975926 @default.
- W2904625209 cites W2061113020 @default.
- W2904625209 cites W2061775664 @default.
- W2904625209 cites W2062322931 @default.
- W2904625209 cites W2062661013 @default.
- W2904625209 cites W2073985842 @default.
- W2904625209 cites W2076734167 @default.
- W2904625209 cites W2082524595 @default.
- W2904625209 cites W2087032263 @default.
- W2904625209 cites W2090563136 @default.
- W2904625209 cites W2098448810 @default.
- W2904625209 cites W2100287780 @default.
- W2904625209 cites W2100396234 @default.
- W2904625209 cites W2122754213 @default.
- W2904625209 cites W213372578 @default.
- W2904625209 cites W2135461196 @default.
- W2904625209 cites W2146765462 @default.
- W2904625209 cites W2153409108 @default.
- W2904625209 cites W2158231500 @default.
- W2904625209 cites W2161552291 @default.
- W2904625209 cites W2169297538 @default.
- W2904625209 cites W2316001945 @default.
- W2904625209 cites W2333897814 @default.
- W2904625209 cites W2340648780 @default.
- W2904625209 cites W2409952208 @default.
- W2904625209 cites W2410667494 @default.
- W2904625209 cites W2778193391 @default.
- W2904625209 cites W2808159835 @default.
- W2904625209 doi "https://doi.org/10.2147/ijn.s177851" @default.
- W2904625209 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6306055" @default.
- W2904625209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30613145" @default.
- W2904625209 hasPublicationYear "2018" @default.
- W2904625209 type Work @default.
- W2904625209 sameAs 2904625209 @default.
- W2904625209 citedByCount "33" @default.
- W2904625209 countsByYear W29046252092019 @default.
- W2904625209 countsByYear W29046252092020 @default.
- W2904625209 countsByYear W29046252092021 @default.
- W2904625209 countsByYear W29046252092022 @default.
- W2904625209 countsByYear W29046252092023 @default.
- W2904625209 crossrefType "journal-article" @default.
- W2904625209 hasAuthorship W2904625209A5000259177 @default.
- W2904625209 hasAuthorship W2904625209A5003997327 @default.
- W2904625209 hasAuthorship W2904625209A5012581417 @default.
- W2904625209 hasAuthorship W2904625209A5048286805 @default.
- W2904625209 hasAuthorship W2904625209A5048522866 @default.
- W2904625209 hasAuthorship W2904625209A5064913310 @default.
- W2904625209 hasAuthorship W2904625209A5075082467 @default.
- W2904625209 hasBestOaLocation W29046252091 @default.
- W2904625209 hasConcept C109316439 @default.
- W2904625209 hasConcept C12554922 @default.
- W2904625209 hasConcept C13965031 @default.
- W2904625209 hasConcept C141071460 @default.
- W2904625209 hasConcept C155672457 @default.
- W2904625209 hasConcept C159985019 @default.
- W2904625209 hasConcept C171250308 @default.
- W2904625209 hasConcept C182606246 @default.
- W2904625209 hasConcept C185592680 @default.
- W2904625209 hasConcept C192562407 @default.
- W2904625209 hasConcept C202751555 @default.