Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904626897> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2904626897 endingPage "1850018" @default.
- W2904626897 startingPage "1850018" @default.
- W2904626897 abstract "Recently, document recommendation has become a very hot research area in online services. Since rating information is usually sparse with exploding growth of the numbers of users and items, conventional collaborative filtering-based methods degrade significantly in recommendation performance. To address this sparseness problem, auxiliary information such as item content information may be utilized. Convolution matrix factorization (ConvMF) is an appealing method, which tightly combines the rating and item content information. Although ConvMF captures contextual information of item content by utilizing convolutional neural network (CNN), the latent representation may not be effective when the rating information is very sparse. To address this problem, we generalize recent advances in supervised CNN and propose a novel recommendation model called supervised convolution matrix factorization (Super-ConvMF), which effectively combines the rating information, item content information and tag information into a unified recommendation framework. Experiments on three real-world datasets, two datasets come from MovieLens and the other one is from Amazon, show our model outperforms the state-of-the-art competitors in terms of the whole range of sparseness." @default.
- W2904626897 created "2018-12-22" @default.
- W2904626897 creator A5000201917 @default.
- W2904626897 creator A5031911658 @default.
- W2904626897 creator A5046372467 @default.
- W2904626897 creator A5055610808 @default.
- W2904626897 date "2018-12-01" @default.
- W2904626897 modified "2023-09-23" @default.
- W2904626897 title "Supervised Convolutional Matrix Factorization for Document Recommendation" @default.
- W2904626897 cites W1971040550 @default.
- W2904626897 cites W2112796928 @default.
- W2904626897 cites W2171960770 @default.
- W2904626897 cites W2618530766 @default.
- W2904626897 doi "https://doi.org/10.1142/s1469026818500189" @default.
- W2904626897 hasPublicationYear "2018" @default.
- W2904626897 type Work @default.
- W2904626897 sameAs 2904626897 @default.
- W2904626897 citedByCount "6" @default.
- W2904626897 countsByYear W29046268972020 @default.
- W2904626897 countsByYear W29046268972021 @default.
- W2904626897 countsByYear W29046268972022 @default.
- W2904626897 countsByYear W29046268972023 @default.
- W2904626897 crossrefType "journal-article" @default.
- W2904626897 hasAuthorship W2904626897A5000201917 @default.
- W2904626897 hasAuthorship W2904626897A5031911658 @default.
- W2904626897 hasAuthorship W2904626897A5046372467 @default.
- W2904626897 hasAuthorship W2904626897A5055610808 @default.
- W2904626897 hasConcept C119857082 @default.
- W2904626897 hasConcept C121332964 @default.
- W2904626897 hasConcept C124101348 @default.
- W2904626897 hasConcept C152671427 @default.
- W2904626897 hasConcept C153180895 @default.
- W2904626897 hasConcept C154945302 @default.
- W2904626897 hasConcept C158693339 @default.
- W2904626897 hasConcept C17744445 @default.
- W2904626897 hasConcept C199539241 @default.
- W2904626897 hasConcept C21569690 @default.
- W2904626897 hasConcept C23123220 @default.
- W2904626897 hasConcept C2776156558 @default.
- W2904626897 hasConcept C2776359362 @default.
- W2904626897 hasConcept C41008148 @default.
- W2904626897 hasConcept C42355184 @default.
- W2904626897 hasConcept C45347329 @default.
- W2904626897 hasConcept C50644808 @default.
- W2904626897 hasConcept C557471498 @default.
- W2904626897 hasConcept C62520636 @default.
- W2904626897 hasConcept C81363708 @default.
- W2904626897 hasConcept C94625758 @default.
- W2904626897 hasConceptScore W2904626897C119857082 @default.
- W2904626897 hasConceptScore W2904626897C121332964 @default.
- W2904626897 hasConceptScore W2904626897C124101348 @default.
- W2904626897 hasConceptScore W2904626897C152671427 @default.
- W2904626897 hasConceptScore W2904626897C153180895 @default.
- W2904626897 hasConceptScore W2904626897C154945302 @default.
- W2904626897 hasConceptScore W2904626897C158693339 @default.
- W2904626897 hasConceptScore W2904626897C17744445 @default.
- W2904626897 hasConceptScore W2904626897C199539241 @default.
- W2904626897 hasConceptScore W2904626897C21569690 @default.
- W2904626897 hasConceptScore W2904626897C23123220 @default.
- W2904626897 hasConceptScore W2904626897C2776156558 @default.
- W2904626897 hasConceptScore W2904626897C2776359362 @default.
- W2904626897 hasConceptScore W2904626897C41008148 @default.
- W2904626897 hasConceptScore W2904626897C42355184 @default.
- W2904626897 hasConceptScore W2904626897C45347329 @default.
- W2904626897 hasConceptScore W2904626897C50644808 @default.
- W2904626897 hasConceptScore W2904626897C557471498 @default.
- W2904626897 hasConceptScore W2904626897C62520636 @default.
- W2904626897 hasConceptScore W2904626897C81363708 @default.
- W2904626897 hasConceptScore W2904626897C94625758 @default.
- W2904626897 hasIssue "04" @default.
- W2904626897 hasLocation W29046268971 @default.
- W2904626897 hasOpenAccess W2904626897 @default.
- W2904626897 hasPrimaryLocation W29046268971 @default.
- W2904626897 hasRelatedWork W2075040002 @default.
- W2904626897 hasRelatedWork W2402445420 @default.
- W2904626897 hasRelatedWork W2594627663 @default.
- W2904626897 hasRelatedWork W2768160734 @default.
- W2904626897 hasRelatedWork W2896364421 @default.
- W2904626897 hasRelatedWork W3018593348 @default.
- W2904626897 hasRelatedWork W3173811578 @default.
- W2904626897 hasRelatedWork W4205331420 @default.
- W2904626897 hasRelatedWork W4206294278 @default.
- W2904626897 hasRelatedWork W4386143129 @default.
- W2904626897 hasVolume "17" @default.
- W2904626897 isParatext "false" @default.
- W2904626897 isRetracted "false" @default.
- W2904626897 magId "2904626897" @default.
- W2904626897 workType "article" @default.