Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904632571> ?p ?o ?g. }
- W2904632571 abstract "Human pose estimation is a challenging problem in computer vision tasks and shares all the difficulties of object detection. This paper focuses on the problems of estimating human pose in still images, including the various appearances and non-rigid body parts. To address these problems, we adopt a CNN to extract multi-scale part information. The appearance model is learned by CNN and the deformable model is computed based on appearance feature. Then, a Multi-Resolution Convolutional Neural Network (MR-CNN) is proposed to train and learn the multi-scale feature of each body part. This model is compared with the related work on the the Leeds Sport Dataset (LSP). The experimental results demonstrate the effectiveness of the proposed method." @default.
- W2904632571 created "2018-12-22" @default.
- W2904632571 creator A5006546107 @default.
- W2904632571 creator A5075167001 @default.
- W2904632571 creator A5079862010 @default.
- W2904632571 creator A5082156574 @default.
- W2904632571 date "2017-11-01" @default.
- W2904632571 modified "2023-09-25" @default.
- W2904632571 title "Human Pose Estimation via Multi-resolution Convolutional Neural Network" @default.
- W2904632571 cites W1540144755 @default.
- W2904632571 cites W1563697767 @default.
- W2904632571 cites W171061157 @default.
- W2904632571 cites W1719372565 @default.
- W2904632571 cites W1816678934 @default.
- W2904632571 cites W1864464506 @default.
- W2904632571 cites W1948369226 @default.
- W2904632571 cites W1994529670 @default.
- W2904632571 cites W1997500560 @default.
- W2904632571 cites W2022699039 @default.
- W2904632571 cites W2030536784 @default.
- W2904632571 cites W2049768550 @default.
- W2904632571 cites W2057204268 @default.
- W2904632571 cites W2075156252 @default.
- W2904632571 cites W2097151019 @default.
- W2904632571 cites W2113325037 @default.
- W2904632571 cites W2120419212 @default.
- W2904632571 cites W2124386111 @default.
- W2904632571 cites W2128271252 @default.
- W2904632571 cites W2135533529 @default.
- W2904632571 cites W2136391815 @default.
- W2904632571 cites W2143487029 @default.
- W2904632571 cites W2155394491 @default.
- W2904632571 cites W2161969291 @default.
- W2904632571 cites W2168356304 @default.
- W2904632571 cites W2174722029 @default.
- W2904632571 cites W2208717854 @default.
- W2904632571 cites W2540396284 @default.
- W2904632571 cites W31861159 @default.
- W2904632571 doi "https://doi.org/10.1109/acpr.2017.64" @default.
- W2904632571 hasPublicationYear "2017" @default.
- W2904632571 type Work @default.
- W2904632571 sameAs 2904632571 @default.
- W2904632571 citedByCount "2" @default.
- W2904632571 countsByYear W29046325712019 @default.
- W2904632571 countsByYear W29046325712020 @default.
- W2904632571 crossrefType "proceedings-article" @default.
- W2904632571 hasAuthorship W2904632571A5006546107 @default.
- W2904632571 hasAuthorship W2904632571A5075167001 @default.
- W2904632571 hasAuthorship W2904632571A5079862010 @default.
- W2904632571 hasAuthorship W2904632571A5082156574 @default.
- W2904632571 hasConcept C121332964 @default.
- W2904632571 hasConcept C127313418 @default.
- W2904632571 hasConcept C138885662 @default.
- W2904632571 hasConcept C153180895 @default.
- W2904632571 hasConcept C154945302 @default.
- W2904632571 hasConcept C22100474 @default.
- W2904632571 hasConcept C2776401178 @default.
- W2904632571 hasConcept C2778755073 @default.
- W2904632571 hasConcept C2781238097 @default.
- W2904632571 hasConcept C3019883945 @default.
- W2904632571 hasConcept C3020199158 @default.
- W2904632571 hasConcept C31972630 @default.
- W2904632571 hasConcept C36613465 @default.
- W2904632571 hasConcept C41008148 @default.
- W2904632571 hasConcept C41895202 @default.
- W2904632571 hasConcept C52102323 @default.
- W2904632571 hasConcept C52622490 @default.
- W2904632571 hasConcept C62520636 @default.
- W2904632571 hasConcept C62649853 @default.
- W2904632571 hasConcept C81363708 @default.
- W2904632571 hasConceptScore W2904632571C121332964 @default.
- W2904632571 hasConceptScore W2904632571C127313418 @default.
- W2904632571 hasConceptScore W2904632571C138885662 @default.
- W2904632571 hasConceptScore W2904632571C153180895 @default.
- W2904632571 hasConceptScore W2904632571C154945302 @default.
- W2904632571 hasConceptScore W2904632571C22100474 @default.
- W2904632571 hasConceptScore W2904632571C2776401178 @default.
- W2904632571 hasConceptScore W2904632571C2778755073 @default.
- W2904632571 hasConceptScore W2904632571C2781238097 @default.
- W2904632571 hasConceptScore W2904632571C3019883945 @default.
- W2904632571 hasConceptScore W2904632571C3020199158 @default.
- W2904632571 hasConceptScore W2904632571C31972630 @default.
- W2904632571 hasConceptScore W2904632571C36613465 @default.
- W2904632571 hasConceptScore W2904632571C41008148 @default.
- W2904632571 hasConceptScore W2904632571C41895202 @default.
- W2904632571 hasConceptScore W2904632571C52102323 @default.
- W2904632571 hasConceptScore W2904632571C52622490 @default.
- W2904632571 hasConceptScore W2904632571C62520636 @default.
- W2904632571 hasConceptScore W2904632571C62649853 @default.
- W2904632571 hasConceptScore W2904632571C81363708 @default.
- W2904632571 hasLocation W29046325711 @default.
- W2904632571 hasOpenAccess W2904632571 @default.
- W2904632571 hasPrimaryLocation W29046325711 @default.
- W2904632571 hasRelatedWork W1556186621 @default.
- W2904632571 hasRelatedWork W2307523691 @default.
- W2904632571 hasRelatedWork W2507506703 @default.
- W2904632571 hasRelatedWork W2612319427 @default.
- W2904632571 hasRelatedWork W2765980167 @default.
- W2904632571 hasRelatedWork W2788314624 @default.
- W2904632571 hasRelatedWork W2792978704 @default.