Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904643594> ?p ?o ?g. }
- W2904643594 abstract "We demonstrate how the dissipative interaction between a superconducting qubit and a microwave photonic crystal can be used for quantum bath engineering. The photonic crystal is created with a step-impedance transmission line which suppresses and enhances the quantum spectral density of states, influencing decay transitions of a transmon circuit. The qubit interacts with the transmission line indirectly via dispersive coupling to a cavity. We characterize the photonic crystal density of states from both the unitary and dissipative dynamics of the qubit. When the qubit is driven, it dissipates into the frequency dependent density of states of the photonic crystal. Our result is the deterministic preparation of qubit superposition states as the steady state of coherent driving and dissipation near the photonic crystal band edge, which we characterize with quantum state tomography. Our results highlight how the multimode environment from the photonic crystal forms a resource for quantum control." @default.
- W2904643594 created "2018-12-22" @default.
- W2904643594 creator A5018906160 @default.
- W2904643594 creator A5072956163 @default.
- W2904643594 creator A5074307128 @default.
- W2904643594 creator A5080265556 @default.
- W2904643594 date "2019-05-28" @default.
- W2904643594 modified "2023-10-13" @default.
- W2904643594 title "Bath engineering of a fluorescing artificial atom with a photonic crystal" @default.
- W2904643594 cites W1516209748 @default.
- W2904643594 cites W1921427678 @default.
- W2904643594 cites W1957764187 @default.
- W2904643594 cites W1963734567 @default.
- W2904643594 cites W1969695012 @default.
- W2904643594 cites W1971185946 @default.
- W2904643594 cites W1973256077 @default.
- W2904643594 cites W1983718136 @default.
- W2904643594 cites W1992078191 @default.
- W2904643594 cites W1992123072 @default.
- W2904643594 cites W1992217095 @default.
- W2904643594 cites W2003945471 @default.
- W2904643594 cites W2012916753 @default.
- W2904643594 cites W2015683881 @default.
- W2904643594 cites W2016157551 @default.
- W2904643594 cites W2031102032 @default.
- W2904643594 cites W2037633243 @default.
- W2904643594 cites W2049605097 @default.
- W2904643594 cites W2053798711 @default.
- W2904643594 cites W2060201892 @default.
- W2904643594 cites W2064265566 @default.
- W2904643594 cites W2066911071 @default.
- W2904643594 cites W2068366279 @default.
- W2904643594 cites W2069045830 @default.
- W2904643594 cites W2071470060 @default.
- W2904643594 cites W2075689277 @default.
- W2904643594 cites W2078553859 @default.
- W2904643594 cites W2084291862 @default.
- W2904643594 cites W2090720607 @default.
- W2904643594 cites W2091988087 @default.
- W2904643594 cites W2092285095 @default.
- W2904643594 cites W2099265531 @default.
- W2904643594 cites W2099939664 @default.
- W2904643594 cites W2103912183 @default.
- W2904643594 cites W2108313133 @default.
- W2904643594 cites W2123320933 @default.
- W2904643594 cites W2153790436 @default.
- W2904643594 cites W2155785078 @default.
- W2904643594 cites W2196127359 @default.
- W2904643594 cites W2209493388 @default.
- W2904643594 cites W2210881642 @default.
- W2904643594 cites W2259011212 @default.
- W2904643594 cites W2267224454 @default.
- W2904643594 cites W2341693593 @default.
- W2904643594 cites W2520843966 @default.
- W2904643594 cites W2726736675 @default.
- W2904643594 cites W2806032480 @default.
- W2904643594 cites W2950948674 @default.
- W2904643594 cites W2995875333 @default.
- W2904643594 cites W3037306418 @default.
- W2904643594 cites W3098207339 @default.
- W2904643594 cites W3098673921 @default.
- W2904643594 cites W3098903042 @default.
- W2904643594 cites W3099781632 @default.
- W2904643594 cites W3104215817 @default.
- W2904643594 cites W3104359509 @default.
- W2904643594 cites W3105871677 @default.
- W2904643594 doi "https://doi.org/10.1103/physreva.99.052126" @default.
- W2904643594 hasPublicationYear "2019" @default.
- W2904643594 type Work @default.
- W2904643594 sameAs 2904643594 @default.
- W2904643594 citedByCount "13" @default.
- W2904643594 countsByYear W29046435942019 @default.
- W2904643594 countsByYear W29046435942020 @default.
- W2904643594 countsByYear W29046435942021 @default.
- W2904643594 countsByYear W29046435942022 @default.
- W2904643594 countsByYear W29046435942023 @default.
- W2904643594 crossrefType "journal-article" @default.
- W2904643594 hasAuthorship W2904643594A5018906160 @default.
- W2904643594 hasAuthorship W2904643594A5072956163 @default.
- W2904643594 hasAuthorship W2904643594A5074307128 @default.
- W2904643594 hasAuthorship W2904643594A5080265556 @default.
- W2904643594 hasBestOaLocation W29046435941 @default.
- W2904643594 hasConcept C121332964 @default.
- W2904643594 hasConcept C15706264 @default.
- W2904643594 hasConcept C203087015 @default.
- W2904643594 hasConcept C26873012 @default.
- W2904643594 hasConcept C2776222033 @default.
- W2904643594 hasConcept C49040817 @default.
- W2904643594 hasConcept C62520636 @default.
- W2904643594 hasConcept C73214911 @default.
- W2904643594 hasConcept C75302062 @default.
- W2904643594 hasConcept C84114770 @default.
- W2904643594 hasConceptScore W2904643594C121332964 @default.
- W2904643594 hasConceptScore W2904643594C15706264 @default.
- W2904643594 hasConceptScore W2904643594C203087015 @default.
- W2904643594 hasConceptScore W2904643594C26873012 @default.
- W2904643594 hasConceptScore W2904643594C2776222033 @default.
- W2904643594 hasConceptScore W2904643594C49040817 @default.
- W2904643594 hasConceptScore W2904643594C62520636 @default.
- W2904643594 hasConceptScore W2904643594C73214911 @default.