Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904649424> ?p ?o ?g. }
- W2904649424 endingPage "184" @default.
- W2904649424 startingPage "169" @default.
- W2904649424 abstract "Risk prediction of disasters is one of the most effective ways to prevent accidents. To solve the problems in multi-factor complex disaster prediction, this paper proposes a new method for risk prediction and factorial risk analysis. Coal and gas outburst accidents were selected as research objects. First, a new coal and gas outburst prediction model was established that consists of 4 levels and 14 factors. Then, the Improved Fruit Fly Optimization Algorithm (IFOA) and the General Regression Neural Network (GRNN) algorithm were combined to establish the IFOA-GRNN prediction model. After that, the sensitivity analysis method was applied to the analysis of the sensitive factors of coal and gas outbursts. Finally, an apriori algorithm was used to mine the disaster information. The method proposed in this paper was applied to the Pingdingshan No. 8 Min. The application results show that the IFOA-GRNN algorithm proposed in this paper has an accuracy rate of 100% for the prediction of accident risk levels. Compared with the Back Propagation (BP), GRNN and FOA-GRNN algorithms, IFOA-GRNN has the characteristics of a smaller prediction error, higher stability and faster convergence. The sensitivity analysis method can judge the sensitive factors of coal and gas outbursts without knowing the mechanisms of the accident. The a priori algorithm can perform good data mining on the combination of high frequency factors leading to accidents and the relationships between the coal and gas outburst levels and factors. The data mining results are very helpful for the prevention and management of coal and gas outbursts." @default.
- W2904649424 created "2018-12-22" @default.
- W2904649424 creator A5003578876 @default.
- W2904649424 creator A5015766464 @default.
- W2904649424 creator A5029484365 @default.
- W2904649424 creator A5049512774 @default.
- W2904649424 creator A5054335657 @default.
- W2904649424 creator A5065159882 @default.
- W2904649424 creator A5091106846 @default.
- W2904649424 date "2019-02-01" @default.
- W2904649424 modified "2023-10-03" @default.
- W2904649424 title "Risk prediction and factors risk analysis based on IFOA-GRNN and apriori algorithms: Application of artificial intelligence in accident prevention" @default.
- W2904649424 cites W1882687204 @default.
- W2904649424 cites W1971033901 @default.
- W2904649424 cites W1989347828 @default.
- W2904649424 cites W1994274421 @default.
- W2904649424 cites W2014249502 @default.
- W2904649424 cites W2039186158 @default.
- W2904649424 cites W2041840996 @default.
- W2904649424 cites W2050148124 @default.
- W2904649424 cites W2050668506 @default.
- W2904649424 cites W2071219494 @default.
- W2904649424 cites W2073610295 @default.
- W2904649424 cites W2075220167 @default.
- W2904649424 cites W2078415638 @default.
- W2904649424 cites W2091103291 @default.
- W2904649424 cites W2093195672 @default.
- W2904649424 cites W2126941453 @default.
- W2904649424 cites W2144475034 @default.
- W2904649424 cites W2190031236 @default.
- W2904649424 cites W2287867824 @default.
- W2904649424 cites W2343274691 @default.
- W2904649424 cites W2416270402 @default.
- W2904649424 cites W2474100270 @default.
- W2904649424 cites W2491978341 @default.
- W2904649424 cites W2493918211 @default.
- W2904649424 cites W2544015229 @default.
- W2904649424 cites W2558706689 @default.
- W2904649424 cites W2566500639 @default.
- W2904649424 cites W258159988 @default.
- W2904649424 cites W2730257523 @default.
- W2904649424 cites W2745794747 @default.
- W2904649424 cites W2750762343 @default.
- W2904649424 cites W2765714237 @default.
- W2904649424 cites W2773823231 @default.
- W2904649424 cites W2783813071 @default.
- W2904649424 cites W2792293237 @default.
- W2904649424 cites W2794695646 @default.
- W2904649424 cites W2796087643 @default.
- W2904649424 cites W2796462654 @default.
- W2904649424 cites W2799946549 @default.
- W2904649424 cites W2802377300 @default.
- W2904649424 cites W2802465900 @default.
- W2904649424 cites W2803473340 @default.
- W2904649424 cites W2804835711 @default.
- W2904649424 cites W2809808609 @default.
- W2904649424 cites W2810606560 @default.
- W2904649424 cites W2888004177 @default.
- W2904649424 cites W418096420 @default.
- W2904649424 doi "https://doi.org/10.1016/j.psep.2018.11.019" @default.
- W2904649424 hasPublicationYear "2019" @default.
- W2904649424 type Work @default.
- W2904649424 sameAs 2904649424 @default.
- W2904649424 citedByCount "70" @default.
- W2904649424 countsByYear W29046494242019 @default.
- W2904649424 countsByYear W29046494242020 @default.
- W2904649424 countsByYear W29046494242021 @default.
- W2904649424 countsByYear W29046494242022 @default.
- W2904649424 countsByYear W29046494242023 @default.
- W2904649424 crossrefType "journal-article" @default.
- W2904649424 hasAuthorship W2904649424A5003578876 @default.
- W2904649424 hasAuthorship W2904649424A5015766464 @default.
- W2904649424 hasAuthorship W2904649424A5029484365 @default.
- W2904649424 hasAuthorship W2904649424A5049512774 @default.
- W2904649424 hasAuthorship W2904649424A5054335657 @default.
- W2904649424 hasAuthorship W2904649424A5065159882 @default.
- W2904649424 hasAuthorship W2904649424A5091106846 @default.
- W2904649424 hasConcept C108615695 @default.
- W2904649424 hasConcept C111472728 @default.
- W2904649424 hasConcept C112972136 @default.
- W2904649424 hasConcept C11413529 @default.
- W2904649424 hasConcept C119857082 @default.
- W2904649424 hasConcept C124101348 @default.
- W2904649424 hasConcept C127413603 @default.
- W2904649424 hasConcept C138885662 @default.
- W2904649424 hasConcept C193524817 @default.
- W2904649424 hasConcept C21200559 @default.
- W2904649424 hasConcept C24326235 @default.
- W2904649424 hasConcept C41008148 @default.
- W2904649424 hasConcept C50644808 @default.
- W2904649424 hasConcept C518851703 @default.
- W2904649424 hasConcept C548081761 @default.
- W2904649424 hasConcept C75553542 @default.
- W2904649424 hasConcept C81440476 @default.
- W2904649424 hasConceptScore W2904649424C108615695 @default.
- W2904649424 hasConceptScore W2904649424C111472728 @default.
- W2904649424 hasConceptScore W2904649424C112972136 @default.
- W2904649424 hasConceptScore W2904649424C11413529 @default.