Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904654489> ?p ?o ?g. }
- W2904654489 abstract "Modern processors typically provide a small number of hardware performance counters to capture a large number of microarchitecture events. These counters can easily generate a huge amount (e.g., GB or TB per day) of data, which we call big performance data in cloud computing platforms with more than thousands of servers and millions of complex workloads running in a 24/7/365 manner. The big performance data provides a precious foundation for root cause analysis of performance bottlenecks, architecture and compiler optimization, and many more. However, it is challenging to extract value from the big performance data due to: 1) the many unperceivable errors (e.g., outliers and missing values); and 2) the difficulty of obtaining insights, e.g., relating events to performance. In this paper, we propose CounterMiner, a rigorous methodology that enables the measurement and understanding of big performance data by using data mining and machine learning techniques. It includes three novel components: 1) using data cleaning to improve data quality by replacing outliers and filling in missing values; 2) iteratively quantifying, ranking, and pruning events based on their importance with respect to performance; 3) quantifying interaction intensity between two events by residual variance. We use sixteen benchmarks (eight from CloudSuite and eight from the Spark version of HiBench) to evaluate CounterMiner. The experimental results show that CounterMiner reduces the average error from 28.3% to 7.7% when multiplexing 10 events on 4 hardware counters. We also conduct a real-world case study, showing that identifying important configuration parameters of Spark programs by event importance is much faster than directly ranking the importance of these parameters." @default.
- W2904654489 created "2018-12-22" @default.
- W2904654489 creator A5008796318 @default.
- W2904654489 creator A5028896138 @default.
- W2904654489 creator A5047215143 @default.
- W2904654489 creator A5048614443 @default.
- W2904654489 creator A5078403633 @default.
- W2904654489 creator A5085781159 @default.
- W2904654489 date "2018-10-01" @default.
- W2904654489 modified "2023-09-30" @default.
- W2904654489 title "CounterMiner: Mining Big Performance Data from Hardware Counters" @default.
- W2904654489 cites W131517945 @default.
- W2904654489 cites W1965351873 @default.
- W2904654489 cites W1975332288 @default.
- W2904654489 cites W2001055007 @default.
- W2904654489 cites W2008441771 @default.
- W2904654489 cites W2013062050 @default.
- W2904654489 cites W2036895660 @default.
- W2904654489 cites W2070493638 @default.
- W2904654489 cites W2080048189 @default.
- W2904654489 cites W2093941454 @default.
- W2904654489 cites W2096898433 @default.
- W2904654489 cites W2097892280 @default.
- W2904654489 cites W2098736822 @default.
- W2904654489 cites W2100181574 @default.
- W2904654489 cites W2102709380 @default.
- W2904654489 cites W2103060820 @default.
- W2904654489 cites W2113308343 @default.
- W2904654489 cites W2119438786 @default.
- W2904654489 cites W2125223451 @default.
- W2904654489 cites W2140585462 @default.
- W2904654489 cites W2141181087 @default.
- W2904654489 cites W2146865435 @default.
- W2904654489 cites W2151326614 @default.
- W2904654489 cites W2153456949 @default.
- W2904654489 cites W2153530968 @default.
- W2904654489 cites W2160121678 @default.
- W2904654489 cites W2168589623 @default.
- W2904654489 cites W2170467352 @default.
- W2904654489 cites W2318844802 @default.
- W2904654489 cites W2419658935 @default.
- W2904654489 cites W2510433528 @default.
- W2904654489 cites W2604804407 @default.
- W2904654489 cites W2752637513 @default.
- W2904654489 cites W3104065274 @default.
- W2904654489 cites W4231442998 @default.
- W2904654489 doi "https://doi.org/10.1109/micro.2018.00056" @default.
- W2904654489 hasPublicationYear "2018" @default.
- W2904654489 type Work @default.
- W2904654489 sameAs 2904654489 @default.
- W2904654489 citedByCount "10" @default.
- W2904654489 countsByYear W29046544892020 @default.
- W2904654489 countsByYear W29046544892021 @default.
- W2904654489 countsByYear W29046544892022 @default.
- W2904654489 countsByYear W29046544892023 @default.
- W2904654489 crossrefType "proceedings-article" @default.
- W2904654489 hasAuthorship W2904654489A5008796318 @default.
- W2904654489 hasAuthorship W2904654489A5028896138 @default.
- W2904654489 hasAuthorship W2904654489A5047215143 @default.
- W2904654489 hasAuthorship W2904654489A5048614443 @default.
- W2904654489 hasAuthorship W2904654489A5078403633 @default.
- W2904654489 hasAuthorship W2904654489A5085781159 @default.
- W2904654489 hasConcept C107598950 @default.
- W2904654489 hasConcept C108010975 @default.
- W2904654489 hasConcept C111919701 @default.
- W2904654489 hasConcept C113775141 @default.
- W2904654489 hasConcept C124101348 @default.
- W2904654489 hasConcept C149635348 @default.
- W2904654489 hasConcept C154945302 @default.
- W2904654489 hasConcept C168781493 @default.
- W2904654489 hasConcept C189430467 @default.
- W2904654489 hasConcept C199360897 @default.
- W2904654489 hasConcept C2781215313 @default.
- W2904654489 hasConcept C41008148 @default.
- W2904654489 hasConcept C6557445 @default.
- W2904654489 hasConcept C75684735 @default.
- W2904654489 hasConcept C79337645 @default.
- W2904654489 hasConcept C79403827 @default.
- W2904654489 hasConcept C79974875 @default.
- W2904654489 hasConcept C86803240 @default.
- W2904654489 hasConcept C93996380 @default.
- W2904654489 hasConceptScore W2904654489C107598950 @default.
- W2904654489 hasConceptScore W2904654489C108010975 @default.
- W2904654489 hasConceptScore W2904654489C111919701 @default.
- W2904654489 hasConceptScore W2904654489C113775141 @default.
- W2904654489 hasConceptScore W2904654489C124101348 @default.
- W2904654489 hasConceptScore W2904654489C149635348 @default.
- W2904654489 hasConceptScore W2904654489C154945302 @default.
- W2904654489 hasConceptScore W2904654489C168781493 @default.
- W2904654489 hasConceptScore W2904654489C189430467 @default.
- W2904654489 hasConceptScore W2904654489C199360897 @default.
- W2904654489 hasConceptScore W2904654489C2781215313 @default.
- W2904654489 hasConceptScore W2904654489C41008148 @default.
- W2904654489 hasConceptScore W2904654489C6557445 @default.
- W2904654489 hasConceptScore W2904654489C75684735 @default.
- W2904654489 hasConceptScore W2904654489C79337645 @default.
- W2904654489 hasConceptScore W2904654489C79403827 @default.
- W2904654489 hasConceptScore W2904654489C79974875 @default.
- W2904654489 hasConceptScore W2904654489C86803240 @default.
- W2904654489 hasConceptScore W2904654489C93996380 @default.