Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904656109> ?p ?o ?g. }
- W2904656109 endingPage "1146" @default.
- W2904656109 startingPage "1136" @default.
- W2904656109 abstract "A key component of automated molecular design is the generation of compound ideas for subsequent filtering and assessment. Recently deep learning approaches have been explored as alternatives to traditional de novo molecular design techniques. Deep learning algorithms rely on learning from large pools of molecules represented as molecular graphs (generally SMILES), and several approaches can be used to tailor the generated molecules to defined regions of chemical space. Cheminformatics has developed alternative higher-level representations that capture the key properties of a set of molecules, and it would be of interest to understand whether such representations can be used to constrain the output of molecule generation algorithms. In this work we explore the use of one such representation, the Reduced Graph, as a definition of target chemical space for a deep learning molecule generator. The Reduced Graph replaces functional groups with superatoms representing the pharmacophoric features. Assigning these superatoms to specific nonorganic element types allows the Reduced Graph to be represented as a valid SMILES string. The mapping from standard SMILES to Reduced Graph SMILES is well-defined, however, the inverse is not true, and this presents a particular challenge. Here we present the results of a novel seq-to-seq approach to molecule generation, where the one to many mapping of Reduced Graph to SMILES is learned on a large training set. This training needs to be performed only once. In a subsequent step, this model can be used to generate arbitrary numbers of compounds that have the same Reduced Graph as any input molecule. Through analysis of data sets in ChEMBL we show that the approach generates valid molecules and can extrapolate to Reduced Graphs unseen in the training set. The method offers an alternative deep learning approach to molecule generation that does not rely on transfer learning, latent space generation, or adversarial networks and is applicable to scaffold hopping and other cheminformatics applications in drug discovery." @default.
- W2904656109 created "2018-12-22" @default.
- W2904656109 creator A5032112911 @default.
- W2904656109 creator A5054936633 @default.
- W2904656109 creator A5079075074 @default.
- W2904656109 creator A5084652936 @default.
- W2904656109 date "2018-12-11" @default.
- W2904656109 modified "2023-10-17" @default.
- W2904656109 title "De Novo Molecule Design by Translating from Reduced Graphs to SMILES" @default.
- W2904656109 cites W1509196567 @default.
- W2904656109 cites W155109449 @default.
- W2904656109 cites W1566256432 @default.
- W2904656109 cites W1582109070 @default.
- W2904656109 cites W1595350250 @default.
- W2904656109 cites W1757990252 @default.
- W2904656109 cites W1902237438 @default.
- W2904656109 cites W1936338303 @default.
- W2904656109 cites W1966657120 @default.
- W2904656109 cites W1975147762 @default.
- W2904656109 cites W1978644181 @default.
- W2904656109 cites W1984994707 @default.
- W2904656109 cites W1987752375 @default.
- W2904656109 cites W1988548997 @default.
- W2904656109 cites W1991286793 @default.
- W2904656109 cites W1993165124 @default.
- W2904656109 cites W2002063821 @default.
- W2904656109 cites W2022476850 @default.
- W2904656109 cites W2038702914 @default.
- W2904656109 cites W2039472955 @default.
- W2904656109 cites W2039693046 @default.
- W2904656109 cites W2046344452 @default.
- W2904656109 cites W2046550159 @default.
- W2904656109 cites W2056910808 @default.
- W2904656109 cites W2064675550 @default.
- W2904656109 cites W2084771292 @default.
- W2904656109 cites W2100014056 @default.
- W2904656109 cites W2121216262 @default.
- W2904656109 cites W2125109129 @default.
- W2904656109 cites W2143612262 @default.
- W2904656109 cites W2163237834 @default.
- W2904656109 cites W2177317049 @default.
- W2904656109 cites W2203775767 @default.
- W2904656109 cites W2221103459 @default.
- W2904656109 cites W2228999631 @default.
- W2904656109 cites W2327438214 @default.
- W2904656109 cites W2525356667 @default.
- W2904656109 cites W2558999090 @default.
- W2904656109 cites W2565684601 @default.
- W2904656109 cites W2569884841 @default.
- W2904656109 cites W2578240541 @default.
- W2904656109 cites W2591883888 @default.
- W2904656109 cites W2610148085 @default.
- W2904656109 cites W2751756351 @default.
- W2904656109 cites W2765224015 @default.
- W2904656109 cites W2775714759 @default.
- W2904656109 cites W2779119857 @default.
- W2904656109 cites W2784270883 @default.
- W2904656109 cites W2784920021 @default.
- W2904656109 cites W2790808809 @default.
- W2904656109 cites W2792130717 @default.
- W2904656109 cites W2792672775 @default.
- W2904656109 cites W2802224083 @default.
- W2904656109 cites W2805002767 @default.
- W2904656109 cites W2963445908 @default.
- W2904656109 cites W4248107770 @default.
- W2904656109 doi "https://doi.org/10.1021/acs.jcim.8b00626" @default.
- W2904656109 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30525594" @default.
- W2904656109 hasPublicationYear "2018" @default.
- W2904656109 type Work @default.
- W2904656109 sameAs 2904656109 @default.
- W2904656109 citedByCount "43" @default.
- W2904656109 countsByYear W29046561092019 @default.
- W2904656109 countsByYear W29046561092020 @default.
- W2904656109 countsByYear W29046561092021 @default.
- W2904656109 countsByYear W29046561092022 @default.
- W2904656109 countsByYear W29046561092023 @default.
- W2904656109 crossrefType "journal-article" @default.
- W2904656109 hasAuthorship W2904656109A5032112911 @default.
- W2904656109 hasAuthorship W2904656109A5054936633 @default.
- W2904656109 hasAuthorship W2904656109A5079075074 @default.
- W2904656109 hasAuthorship W2904656109A5084652936 @default.
- W2904656109 hasConcept C119857082 @default.
- W2904656109 hasConcept C132525143 @default.
- W2904656109 hasConcept C147597530 @default.
- W2904656109 hasConcept C154945302 @default.
- W2904656109 hasConcept C177264268 @default.
- W2904656109 hasConcept C17744445 @default.
- W2904656109 hasConcept C185592680 @default.
- W2904656109 hasConcept C199360897 @default.
- W2904656109 hasConcept C199539241 @default.
- W2904656109 hasConcept C2776359362 @default.
- W2904656109 hasConcept C2780022179 @default.
- W2904656109 hasConcept C41008148 @default.
- W2904656109 hasConcept C55493867 @default.
- W2904656109 hasConcept C68762167 @default.
- W2904656109 hasConcept C74187038 @default.
- W2904656109 hasConcept C80444323 @default.
- W2904656109 hasConcept C94625758 @default.