Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904672353> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2904672353 abstract "Weighted total least-squares for condition equation (WTLSC) is a method to solve the problem that random errors exist in both observation vector and coefficient matrix of condition equation. WTLSC takes into account the case that the elements in the observation vector and coefficient matrix are independent. But in some problems, the coefficient matrix and the observation vector have common elements. Therefore, this study extends the WTLSC into IWTLSC (improved WTLSC), to deal with the case that the elements in the observation vector and coefficient matrix are dependent. The derivation process of solutions, variance-covariance matrices and bias-corrections of IWTLSC are given. A simulated experiment is applied to illuminate the proposed IWTLSC method. Considering the dependent and independent condition respectively, two group simulated data are implemented. The results show that the IWTLSC method can obtain stable solution. The bias can be corrected effectively, and the IWTLSC method is an alternative strategy to solve the nonlinear problems without linearizing." @default.
- W2904672353 created "2018-12-22" @default.
- W2904672353 creator A5044314141 @default.
- W2904672353 creator A5044439125 @default.
- W2904672353 creator A5057742472 @default.
- W2904672353 creator A5089491113 @default.
- W2904672353 date "2018-06-01" @default.
- W2904672353 modified "2023-09-26" @default.
- W2904672353 title "An Improved Weighted Total Least-Squares for Condition Equation and Corresponding Bias-Corrected Method" @default.
- W2904672353 cites W1484947071 @default.
- W2904672353 cites W1964137231 @default.
- W2904672353 cites W1971585425 @default.
- W2904672353 cites W1976377934 @default.
- W2904672353 cites W2009779582 @default.
- W2904672353 cites W2012361529 @default.
- W2904672353 cites W2032082196 @default.
- W2904672353 cites W2084423326 @default.
- W2904672353 cites W2315618224 @default.
- W2904672353 cites W2508445414 @default.
- W2904672353 cites W2770514250 @default.
- W2904672353 doi "https://doi.org/10.1109/geoinformatics.2018.8557083" @default.
- W2904672353 hasPublicationYear "2018" @default.
- W2904672353 type Work @default.
- W2904672353 sameAs 2904672353 @default.
- W2904672353 citedByCount "1" @default.
- W2904672353 countsByYear W29046723532021 @default.
- W2904672353 crossrefType "proceedings-article" @default.
- W2904672353 hasAuthorship W2904672353A5044314141 @default.
- W2904672353 hasAuthorship W2904672353A5044439125 @default.
- W2904672353 hasAuthorship W2904672353A5057742472 @default.
- W2904672353 hasAuthorship W2904672353A5089491113 @default.
- W2904672353 hasConcept C105795698 @default.
- W2904672353 hasConcept C106487976 @default.
- W2904672353 hasConcept C11413529 @default.
- W2904672353 hasConcept C121332964 @default.
- W2904672353 hasConcept C126255220 @default.
- W2904672353 hasConcept C158693339 @default.
- W2904672353 hasConcept C159985019 @default.
- W2904672353 hasConcept C163175372 @default.
- W2904672353 hasConcept C185142706 @default.
- W2904672353 hasConcept C185429906 @default.
- W2904672353 hasConcept C192562407 @default.
- W2904672353 hasConcept C28826006 @default.
- W2904672353 hasConcept C33923547 @default.
- W2904672353 hasConcept C58663186 @default.
- W2904672353 hasConcept C60866291 @default.
- W2904672353 hasConcept C62520636 @default.
- W2904672353 hasConcept C9936470 @default.
- W2904672353 hasConceptScore W2904672353C105795698 @default.
- W2904672353 hasConceptScore W2904672353C106487976 @default.
- W2904672353 hasConceptScore W2904672353C11413529 @default.
- W2904672353 hasConceptScore W2904672353C121332964 @default.
- W2904672353 hasConceptScore W2904672353C126255220 @default.
- W2904672353 hasConceptScore W2904672353C158693339 @default.
- W2904672353 hasConceptScore W2904672353C159985019 @default.
- W2904672353 hasConceptScore W2904672353C163175372 @default.
- W2904672353 hasConceptScore W2904672353C185142706 @default.
- W2904672353 hasConceptScore W2904672353C185429906 @default.
- W2904672353 hasConceptScore W2904672353C192562407 @default.
- W2904672353 hasConceptScore W2904672353C28826006 @default.
- W2904672353 hasConceptScore W2904672353C33923547 @default.
- W2904672353 hasConceptScore W2904672353C58663186 @default.
- W2904672353 hasConceptScore W2904672353C60866291 @default.
- W2904672353 hasConceptScore W2904672353C62520636 @default.
- W2904672353 hasConceptScore W2904672353C9936470 @default.
- W2904672353 hasLocation W29046723531 @default.
- W2904672353 hasOpenAccess W2904672353 @default.
- W2904672353 hasPrimaryLocation W29046723531 @default.
- W2904672353 hasRelatedWork W1780291122 @default.
- W2904672353 hasRelatedWork W185729231 @default.
- W2904672353 hasRelatedWork W1976691029 @default.
- W2904672353 hasRelatedWork W2022749946 @default.
- W2904672353 hasRelatedWork W2035378125 @default.
- W2904672353 hasRelatedWork W2043306634 @default.
- W2904672353 hasRelatedWork W2099758695 @default.
- W2904672353 hasRelatedWork W2100161451 @default.
- W2904672353 hasRelatedWork W2133814779 @default.
- W2904672353 hasRelatedWork W2175287832 @default.
- W2904672353 hasRelatedWork W2331277958 @default.
- W2904672353 hasRelatedWork W2379819646 @default.
- W2904672353 hasRelatedWork W2554522181 @default.
- W2904672353 hasRelatedWork W2934782066 @default.
- W2904672353 hasRelatedWork W2117028362 @default.
- W2904672353 hasRelatedWork W2819624780 @default.
- W2904672353 hasRelatedWork W2867527545 @default.
- W2904672353 hasRelatedWork W2923671112 @default.
- W2904672353 hasRelatedWork W2930376167 @default.
- W2904672353 hasRelatedWork W2958007067 @default.
- W2904672353 isParatext "false" @default.
- W2904672353 isRetracted "false" @default.
- W2904672353 magId "2904672353" @default.
- W2904672353 workType "article" @default.