Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904676244> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2904676244 abstract "Precise prediction of severe diseases resulting in mortality is one of the main issues in medical fields. Even if pathological and radiological measurements provide competitive precision, they usually require large costs of time and expense to obtain and analyze the data for prediction. Recently, end-to-end approaches based on deep neural networks have been proposed, however, they still suffer from the low classification performance and difficulties of interpretation. In this study, we propose a novel disease prediction method, EHAN (EHR History-based prediction using Attention Network), based on the recurrent neural network (RNN) and attention mechanism. The proposed method incorporates (1) a bidirectional gated recurrent units (GRU) for automated sequential modeling, (2) attention mechanism for improving long-term dependence modeling, (3) RNN-based gradient-weighted class activation mapping (Grad-CAM) to visualize the class specific attention-weights. We conducted the experiments to predict the occurrence of risky disease containing cardiovascular and cerebrovascular diseases from more than 40,000 hypertension patients' electronic health records (EHR). The results showed that the proposed method outperformed the state-of-the-art model with respect to the various performance metrics. Furthermore, we confirmed that the proposed visualizing methods can be used to assist data-driven discovery." @default.
- W2904676244 created "2018-12-22" @default.
- W2904676244 creator A5003862414 @default.
- W2904676244 creator A5021354255 @default.
- W2904676244 creator A5022133103 @default.
- W2904676244 creator A5048067770 @default.
- W2904676244 creator A5074393185 @default.
- W2904676244 creator A5080982091 @default.
- W2904676244 date "2018-10-01" @default.
- W2904676244 modified "2023-09-24" @default.
- W2904676244 title "[Regular Paper] Interpretable Prediction of Vascular Diseases from Electronic Health Records via Deep Attention Networks" @default.
- W2904676244 cites W2057536936 @default.
- W2904676244 cites W2064675550 @default.
- W2904676244 cites W2107878631 @default.
- W2904676244 cites W2125065061 @default.
- W2904676244 cites W2198606573 @default.
- W2904676244 cites W2295107390 @default.
- W2904676244 cites W2345255852 @default.
- W2904676244 cites W2345512687 @default.
- W2904676244 cites W2537126746 @default.
- W2904676244 cites W2919115771 @default.
- W2904676244 cites W2962739339 @default.
- W2904676244 cites W2962858109 @default.
- W2904676244 cites W3098949126 @default.
- W2904676244 cites W3125937743 @default.
- W2904676244 doi "https://doi.org/10.1109/bibe.2018.00028" @default.
- W2904676244 hasPublicationYear "2018" @default.
- W2904676244 type Work @default.
- W2904676244 sameAs 2904676244 @default.
- W2904676244 citedByCount "5" @default.
- W2904676244 countsByYear W29046762442021 @default.
- W2904676244 countsByYear W29046762442022 @default.
- W2904676244 countsByYear W29046762442023 @default.
- W2904676244 crossrefType "proceedings-article" @default.
- W2904676244 hasAuthorship W2904676244A5003862414 @default.
- W2904676244 hasAuthorship W2904676244A5021354255 @default.
- W2904676244 hasAuthorship W2904676244A5022133103 @default.
- W2904676244 hasAuthorship W2904676244A5048067770 @default.
- W2904676244 hasAuthorship W2904676244A5074393185 @default.
- W2904676244 hasAuthorship W2904676244A5080982091 @default.
- W2904676244 hasConcept C124101348 @default.
- W2904676244 hasConcept C154945302 @default.
- W2904676244 hasConcept C160735492 @default.
- W2904676244 hasConcept C17744445 @default.
- W2904676244 hasConcept C199539241 @default.
- W2904676244 hasConcept C2522767166 @default.
- W2904676244 hasConcept C3019952477 @default.
- W2904676244 hasConcept C3020144179 @default.
- W2904676244 hasConcept C41008148 @default.
- W2904676244 hasConceptScore W2904676244C124101348 @default.
- W2904676244 hasConceptScore W2904676244C154945302 @default.
- W2904676244 hasConceptScore W2904676244C160735492 @default.
- W2904676244 hasConceptScore W2904676244C17744445 @default.
- W2904676244 hasConceptScore W2904676244C199539241 @default.
- W2904676244 hasConceptScore W2904676244C2522767166 @default.
- W2904676244 hasConceptScore W2904676244C3019952477 @default.
- W2904676244 hasConceptScore W2904676244C3020144179 @default.
- W2904676244 hasConceptScore W2904676244C41008148 @default.
- W2904676244 hasLocation W29046762441 @default.
- W2904676244 hasOpenAccess W2904676244 @default.
- W2904676244 hasPrimaryLocation W29046762441 @default.
- W2904676244 hasRelatedWork W2080680021 @default.
- W2904676244 hasRelatedWork W2296023454 @default.
- W2904676244 hasRelatedWork W2535584405 @default.
- W2904676244 hasRelatedWork W2594685110 @default.
- W2904676244 hasRelatedWork W2625625371 @default.
- W2904676244 hasRelatedWork W2810759579 @default.
- W2904676244 hasRelatedWork W2949866548 @default.
- W2904676244 hasRelatedWork W3005430338 @default.
- W2904676244 hasRelatedWork W4225725093 @default.
- W2904676244 hasRelatedWork W3096505054 @default.
- W2904676244 isParatext "false" @default.
- W2904676244 isRetracted "false" @default.
- W2904676244 magId "2904676244" @default.
- W2904676244 workType "article" @default.