Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904681659> ?p ?o ?g. }
- W2904681659 endingPage "105561" @default.
- W2904681659 startingPage "105561" @default.
- W2904681659 abstract "This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems." @default.
- W2904681659 created "2018-12-22" @default.
- W2904681659 creator A5001694845 @default.
- W2904681659 creator A5020221277 @default.
- W2904681659 creator A5046960600 @default.
- W2904681659 creator A5059109200 @default.
- W2904681659 creator A5061592358 @default.
- W2904681659 date "2020-01-01" @default.
- W2904681659 modified "2023-09-28" @default.
- W2904681659 title "Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework" @default.
- W2904681659 cites W121966788 @default.
- W2904681659 cites W1480620796 @default.
- W2904681659 cites W1510052597 @default.
- W2904681659 cites W1771090652 @default.
- W2904681659 cites W1967922104 @default.
- W2904681659 cites W1972313188 @default.
- W2904681659 cites W1997526754 @default.
- W2904681659 cites W2001890098 @default.
- W2904681659 cites W2005069879 @default.
- W2904681659 cites W2050755804 @default.
- W2904681659 cites W2071902801 @default.
- W2904681659 cites W2080053379 @default.
- W2904681659 cites W2081089147 @default.
- W2904681659 cites W2093229042 @default.
- W2904681659 cites W2118298627 @default.
- W2904681659 cites W2134378426 @default.
- W2904681659 cites W2135771770 @default.
- W2904681659 cites W2144884795 @default.
- W2904681659 cites W2191490049 @default.
- W2904681659 cites W2202796805 @default.
- W2904681659 cites W2326612808 @default.
- W2904681659 cites W2342514950 @default.
- W2904681659 cites W2520616998 @default.
- W2904681659 cites W2537947696 @default.
- W2904681659 cites W2544764962 @default.
- W2904681659 cites W2594558794 @default.
- W2904681659 cites W2611806403 @default.
- W2904681659 cites W2761232332 @default.
- W2904681659 cites W2767447305 @default.
- W2904681659 cites W2767522973 @default.
- W2904681659 cites W2767536961 @default.
- W2904681659 cites W2800348953 @default.
- W2904681659 cites W2808081742 @default.
- W2904681659 cites W4231442702 @default.
- W2904681659 cites W970944711 @default.
- W2904681659 doi "https://doi.org/10.1016/j.cie.2018.12.008" @default.
- W2904681659 hasPublicationYear "2020" @default.
- W2904681659 type Work @default.
- W2904681659 sameAs 2904681659 @default.
- W2904681659 citedByCount "8" @default.
- W2904681659 countsByYear W29046816592020 @default.
- W2904681659 countsByYear W29046816592021 @default.
- W2904681659 countsByYear W29046816592022 @default.
- W2904681659 countsByYear W29046816592023 @default.
- W2904681659 crossrefType "journal-article" @default.
- W2904681659 hasAuthorship W2904681659A5001694845 @default.
- W2904681659 hasAuthorship W2904681659A5020221277 @default.
- W2904681659 hasAuthorship W2904681659A5046960600 @default.
- W2904681659 hasAuthorship W2904681659A5059109200 @default.
- W2904681659 hasAuthorship W2904681659A5061592358 @default.
- W2904681659 hasBestOaLocation W29046816591 @default.
- W2904681659 hasConcept C105795698 @default.
- W2904681659 hasConcept C108713360 @default.
- W2904681659 hasConcept C111335779 @default.
- W2904681659 hasConcept C111919701 @default.
- W2904681659 hasConcept C117251300 @default.
- W2904681659 hasConcept C119857082 @default.
- W2904681659 hasConcept C124101348 @default.
- W2904681659 hasConcept C126255220 @default.
- W2904681659 hasConcept C150325174 @default.
- W2904681659 hasConcept C165696696 @default.
- W2904681659 hasConcept C177264268 @default.
- W2904681659 hasConcept C17744445 @default.
- W2904681659 hasConcept C193254401 @default.
- W2904681659 hasConcept C199360897 @default.
- W2904681659 hasConcept C199539241 @default.
- W2904681659 hasConcept C2524010 @default.
- W2904681659 hasConcept C33923547 @default.
- W2904681659 hasConcept C38652104 @default.
- W2904681659 hasConcept C41008148 @default.
- W2904681659 hasConcept C81692654 @default.
- W2904681659 hasConcept C84525736 @default.
- W2904681659 hasConcept C98045186 @default.
- W2904681659 hasConceptScore W2904681659C105795698 @default.
- W2904681659 hasConceptScore W2904681659C108713360 @default.
- W2904681659 hasConceptScore W2904681659C111335779 @default.
- W2904681659 hasConceptScore W2904681659C111919701 @default.
- W2904681659 hasConceptScore W2904681659C117251300 @default.
- W2904681659 hasConceptScore W2904681659C119857082 @default.
- W2904681659 hasConceptScore W2904681659C124101348 @default.
- W2904681659 hasConceptScore W2904681659C126255220 @default.
- W2904681659 hasConceptScore W2904681659C150325174 @default.
- W2904681659 hasConceptScore W2904681659C165696696 @default.
- W2904681659 hasConceptScore W2904681659C177264268 @default.
- W2904681659 hasConceptScore W2904681659C17744445 @default.
- W2904681659 hasConceptScore W2904681659C193254401 @default.
- W2904681659 hasConceptScore W2904681659C199360897 @default.
- W2904681659 hasConceptScore W2904681659C199539241 @default.