Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904691890> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2904691890 abstract "We have developed an artificial neural network to determine the components of error in measuring the angles by automated goniometric systems whose change over time is a non-stationary random process. There are known techniques for processing measurement results and normalizing the systematic and random components of measurement errors, they have been applied for many years, they are well justified, maximally formalized, fundamentally different and are governed by respective regulations. However, it is still a rather difficult and labor-intensive procedure to determine exactly which component of an error is present in the measurement results. A given procedure is based on using the Fisher’s dispersion criterion. In order to automate this procedure and improve performance efficiency of performed operations, we have developed an artificial neural network (ANN) and examined its functioning. It was determined that the proposed ANN could be successfully employed instead of known analytical-computational procedure using the Fisher’s dispersion criterion. The application of ANN could significantly reduce labor intensity and improve the efficiency of determining the systematic and random components of measurement errors. This is predetermined by the capability of ANN to perform parallel processing of measurement data in real time. The practical implementation of ANN is based on using the neuro-simulator Neural Analyzer, analytical software Deductor Professional developed by BaseGroupLabs. We trained ANN and tested its functionality on the set of simulation results and actual multiple observations when measuring the plane angle of a 24-facet prism. The ability of ANN to quickly and correctly determine components of measurement errors at the stage of analysis of measurement information makes it possible to subsequently define methods for its further processing in accordance with regulatory requirements. That would improve the accuracy and reliability of measurement results as it could help avoid incorrect and inaccurate calculations when normalizing measurement errors." @default.
- W2904691890 created "2018-12-22" @default.
- W2904691890 creator A5010724397 @default.
- W2904691890 creator A5018755887 @default.
- W2904691890 creator A5024834621 @default.
- W2904691890 creator A5070422084 @default.
- W2904691890 creator A5077089096 @default.
- W2904691890 date "2018-09-12" @default.
- W2904691890 modified "2023-10-16" @default.
- W2904691890 title "Development of artificial neural network for determining the components of errors when measuring angles using a goniometric software-hardware complex" @default.
- W2904691890 cites W1514205146 @default.
- W2904691890 cites W152372584 @default.
- W2904691890 cites W1632654664 @default.
- W2904691890 cites W1991378283 @default.
- W2904691890 cites W2022262154 @default.
- W2904691890 cites W2129308247 @default.
- W2904691890 cites W2167501865 @default.
- W2904691890 cites W2558538079 @default.
- W2904691890 cites W2761801613 @default.
- W2904691890 cites W2768943467 @default.
- W2904691890 cites W904711598 @default.
- W2904691890 cites W1489541738 @default.
- W2904691890 cites W2621352740 @default.
- W2904691890 doi "https://doi.org/10.15587/1729-4061.2018.141290" @default.
- W2904691890 hasPublicationYear "2018" @default.
- W2904691890 type Work @default.
- W2904691890 sameAs 2904691890 @default.
- W2904691890 citedByCount "1" @default.
- W2904691890 countsByYear W29046918902020 @default.
- W2904691890 crossrefType "journal-article" @default.
- W2904691890 hasAuthorship W2904691890A5010724397 @default.
- W2904691890 hasAuthorship W2904691890A5018755887 @default.
- W2904691890 hasAuthorship W2904691890A5024834621 @default.
- W2904691890 hasAuthorship W2904691890A5070422084 @default.
- W2904691890 hasAuthorship W2904691890A5077089096 @default.
- W2904691890 hasBestOaLocation W29046918901 @default.
- W2904691890 hasConcept C111919701 @default.
- W2904691890 hasConcept C120665830 @default.
- W2904691890 hasConcept C121332964 @default.
- W2904691890 hasConcept C127413603 @default.
- W2904691890 hasConcept C154945302 @default.
- W2904691890 hasConcept C199639397 @default.
- W2904691890 hasConcept C2777904410 @default.
- W2904691890 hasConcept C41008148 @default.
- W2904691890 hasConcept C48806519 @default.
- W2904691890 hasConcept C50644808 @default.
- W2904691890 hasConceptScore W2904691890C111919701 @default.
- W2904691890 hasConceptScore W2904691890C120665830 @default.
- W2904691890 hasConceptScore W2904691890C121332964 @default.
- W2904691890 hasConceptScore W2904691890C127413603 @default.
- W2904691890 hasConceptScore W2904691890C154945302 @default.
- W2904691890 hasConceptScore W2904691890C199639397 @default.
- W2904691890 hasConceptScore W2904691890C2777904410 @default.
- W2904691890 hasConceptScore W2904691890C41008148 @default.
- W2904691890 hasConceptScore W2904691890C48806519 @default.
- W2904691890 hasConceptScore W2904691890C50644808 @default.
- W2904691890 hasLocation W29046918901 @default.
- W2904691890 hasOpenAccess W2904691890 @default.
- W2904691890 hasPrimaryLocation W29046918901 @default.
- W2904691890 hasRelatedWork W2347547156 @default.
- W2904691890 hasRelatedWork W2356158875 @default.
- W2904691890 hasRelatedWork W2367699234 @default.
- W2904691890 hasRelatedWork W2386387936 @default.
- W2904691890 hasRelatedWork W2558538079 @default.
- W2904691890 hasRelatedWork W3001020386 @default.
- W2904691890 hasRelatedWork W3107474891 @default.
- W2904691890 hasRelatedWork W4285137263 @default.
- W2904691890 hasRelatedWork W644753246 @default.
- W2904691890 hasRelatedWork W1629725936 @default.
- W2904691890 isParatext "false" @default.
- W2904691890 isRetracted "false" @default.
- W2904691890 magId "2904691890" @default.
- W2904691890 workType "article" @default.