Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904693133> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2904693133 abstract "Background: Convolution neural networks (CNN) is increasingly used in computer science and finds more and more applications in different fields. However, analyzing brain network with CNN is not trivial, due to the non-Euclidean characteristics of brain network built by graph theory. Method: To address this problem, we used a famous algorithm word2vec from the field of natural language processing (NLP), to represent the vertexes of graph in the node embedding space, and transform the brain network into images, which can bridge the gap between brain network and CNN. Using this model, we analyze and classify the brain network from Magnetoencephalography (MEG) data into two categories: normal controls and patients with migraine. Results: In the experiments, we applied our method on the clinical MEG dataset, and got the mean classification accuracy rate 81.25%. Conclusions: These results indicate that our method can feasibly analyze and classify the brain network, and all the abundant resources of CNN can be used on the analysis of brain network." @default.
- W2904693133 created "2018-12-22" @default.
- W2904693133 creator A5063568458 @default.
- W2904693133 creator A5078593299 @default.
- W2904693133 date "2018-12-10" @default.
- W2904693133 modified "2023-10-01" @default.
- W2904693133 title "Brain Network Analysis and Classification Based on Convolutional Neural Network" @default.
- W2904693133 cites W1968439746 @default.
- W2904693133 cites W197865394 @default.
- W2904693133 cites W1979426401 @default.
- W2904693133 cites W1994801733 @default.
- W2904693133 cites W1999653836 @default.
- W2904693133 cites W2002396510 @default.
- W2904693133 cites W2008620264 @default.
- W2904693133 cites W2008781224 @default.
- W2904693133 cites W2034802170 @default.
- W2904693133 cites W2040956707 @default.
- W2904693133 cites W2051925828 @default.
- W2904693133 cites W2056944867 @default.
- W2904693133 cites W2060464767 @default.
- W2904693133 cites W2061752069 @default.
- W2904693133 cites W2071158443 @default.
- W2904693133 cites W2076380208 @default.
- W2904693133 cites W2089458547 @default.
- W2904693133 cites W2112090702 @default.
- W2904693133 cites W2112796928 @default.
- W2904693133 cites W2117731089 @default.
- W2904693133 cites W2142326570 @default.
- W2904693133 cites W2148606196 @default.
- W2904693133 cites W2153624566 @default.
- W2904693133 cites W2166073443 @default.
- W2904693133 cites W2465310262 @default.
- W2904693133 cites W2511999769 @default.
- W2904693133 cites W2526511911 @default.
- W2904693133 cites W2962756421 @default.
- W2904693133 cites W321061927 @default.
- W2904693133 doi "https://doi.org/10.3389/fncom.2018.00095" @default.
- W2904693133 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6295646" @default.
- W2904693133 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30618690" @default.
- W2904693133 hasPublicationYear "2018" @default.
- W2904693133 type Work @default.
- W2904693133 sameAs 2904693133 @default.
- W2904693133 citedByCount "18" @default.
- W2904693133 countsByYear W29046931332020 @default.
- W2904693133 countsByYear W29046931332021 @default.
- W2904693133 countsByYear W29046931332022 @default.
- W2904693133 countsByYear W29046931332023 @default.
- W2904693133 crossrefType "journal-article" @default.
- W2904693133 hasAuthorship W2904693133A5063568458 @default.
- W2904693133 hasAuthorship W2904693133A5078593299 @default.
- W2904693133 hasBestOaLocation W29046931331 @default.
- W2904693133 hasConcept C132525143 @default.
- W2904693133 hasConcept C153180895 @default.
- W2904693133 hasConcept C154945302 @default.
- W2904693133 hasConcept C15744967 @default.
- W2904693133 hasConcept C169760540 @default.
- W2904693133 hasConcept C2776461190 @default.
- W2904693133 hasConcept C41008148 @default.
- W2904693133 hasConcept C41608201 @default.
- W2904693133 hasConcept C522805319 @default.
- W2904693133 hasConcept C556910895 @default.
- W2904693133 hasConcept C80444323 @default.
- W2904693133 hasConcept C81363708 @default.
- W2904693133 hasConceptScore W2904693133C132525143 @default.
- W2904693133 hasConceptScore W2904693133C153180895 @default.
- W2904693133 hasConceptScore W2904693133C154945302 @default.
- W2904693133 hasConceptScore W2904693133C15744967 @default.
- W2904693133 hasConceptScore W2904693133C169760540 @default.
- W2904693133 hasConceptScore W2904693133C2776461190 @default.
- W2904693133 hasConceptScore W2904693133C41008148 @default.
- W2904693133 hasConceptScore W2904693133C41608201 @default.
- W2904693133 hasConceptScore W2904693133C522805319 @default.
- W2904693133 hasConceptScore W2904693133C556910895 @default.
- W2904693133 hasConceptScore W2904693133C80444323 @default.
- W2904693133 hasConceptScore W2904693133C81363708 @default.
- W2904693133 hasFunder F4320306080 @default.
- W2904693133 hasFunder F4320321001 @default.
- W2904693133 hasFunder F4320337359 @default.
- W2904693133 hasLocation W29046931331 @default.
- W2904693133 hasLocation W29046931332 @default.
- W2904693133 hasLocation W29046931333 @default.
- W2904693133 hasLocation W29046931334 @default.
- W2904693133 hasOpenAccess W2904693133 @default.
- W2904693133 hasPrimaryLocation W29046931331 @default.
- W2904693133 hasRelatedWork W2521062615 @default.
- W2904693133 hasRelatedWork W2735477435 @default.
- W2904693133 hasRelatedWork W2767651786 @default.
- W2904693133 hasRelatedWork W2912288872 @default.
- W2904693133 hasRelatedWork W3016958897 @default.
- W2904693133 hasRelatedWork W3045739591 @default.
- W2904693133 hasRelatedWork W3181746755 @default.
- W2904693133 hasRelatedWork W4283379348 @default.
- W2904693133 hasRelatedWork W4312228356 @default.
- W2904693133 hasRelatedWork W4312417841 @default.
- W2904693133 hasVolume "12" @default.
- W2904693133 isParatext "false" @default.
- W2904693133 isRetracted "false" @default.
- W2904693133 magId "2904693133" @default.
- W2904693133 workType "article" @default.