Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904693773> ?p ?o ?g. }
- W2904693773 endingPage "865" @default.
- W2904693773 startingPage "855" @default.
- W2904693773 abstract "Measuring the demographic parameters of exploited populations is central to predicting their vulnerability and extinction risk. However, current rates of population decline and species loss greatly outpace our ability to empirically monitor all populations that are potentially threatened.The scale of this problem cannot be addressed through additional data collection alone, and therefore it is a common practice to conduct population assessments based on surrogate data collected from similar species. However, this approach introduces biases and imprecisions that are difficult to quantify. Recent developments in hierarchical modelling have enabled missing values to be reconstructed based on the correlations between available life-history data, linking similar species based on phylogeny and environmental conditions.However, these methods cannot resolve life-history variability among populations or species that are closely placed spatially or taxonomically. Here, theoretically motivated constraints that align with life-history theory offer a new avenue for addressing this problem. We describe a Bayesian hierarchical approach that combines fragmented, multispecies and multi-population data with established life-history theory, in order to objectively determine similarity between populations based on trait correlations (life-history trade-offs) obtained from model fitting.We reconstruct 59 unobserved life-history parameters for 23 populations of tuna that sustain some of the world's most valuable fisheries. Testing by cross-validation across different scenarios indicated that life-histories were accurately reconstructed when information was available for other populations of the same species. The reconstruction of several traits was also accurate for species represented by a single population, although credible intervals increased dramatically. Synthesis and applications. The described Bayesian hierarchical method provides access to life-history traits that are difficult to measure directly and reconstructs missing life-history information useful for assessing populations and species that are directly or indirectly affected by human exploitation of natural resources. The method is particularly useful for examining populations that are spatially or taxonomically similar, and the reconstructed life-history strategies described for the principal market tunas have immediate application to the world-wide management of these fisheries." @default.
- W2904693773 created "2018-12-22" @default.
- W2904693773 creator A5011629984 @default.
- W2904693773 creator A5012720814 @default.
- W2904693773 creator A5019054095 @default.
- W2904693773 creator A5021802314 @default.
- W2904693773 creator A5022190399 @default.
- W2904693773 creator A5060725859 @default.
- W2904693773 date "2019-02-01" @default.
- W2904693773 modified "2023-10-10" @default.
- W2904693773 title "Global reconstruction of life‐history strategies: A case study using tunas" @default.
- W2904693773 cites W1567548236 @default.
- W2904693773 cites W1776222000 @default.
- W2904693773 cites W1973933025 @default.
- W2904693773 cites W1979207309 @default.
- W2904693773 cites W1981457167 @default.
- W2904693773 cites W1992806700 @default.
- W2904693773 cites W2018445138 @default.
- W2904693773 cites W2019651485 @default.
- W2904693773 cites W2021275983 @default.
- W2904693773 cites W2030695471 @default.
- W2904693773 cites W2056220746 @default.
- W2904693773 cites W2079761956 @default.
- W2904693773 cites W2093619014 @default.
- W2904693773 cites W2105604216 @default.
- W2904693773 cites W2109235087 @default.
- W2904693773 cites W2121274853 @default.
- W2904693773 cites W2125029225 @default.
- W2904693773 cites W2140668970 @default.
- W2904693773 cites W2140764013 @default.
- W2904693773 cites W2146205670 @default.
- W2904693773 cites W2148081592 @default.
- W2904693773 cites W2162348455 @default.
- W2904693773 cites W2163759533 @default.
- W2904693773 cites W2166825415 @default.
- W2904693773 cites W2167369521 @default.
- W2904693773 cites W2167875938 @default.
- W2904693773 cites W2170459828 @default.
- W2904693773 cites W2213375803 @default.
- W2904693773 cites W2230528974 @default.
- W2904693773 cites W2277261422 @default.
- W2904693773 cites W2331992033 @default.
- W2904693773 cites W2361405070 @default.
- W2904693773 cites W2507174355 @default.
- W2904693773 cites W2737644475 @default.
- W2904693773 cites W2753386365 @default.
- W2904693773 cites W2846965669 @default.
- W2904693773 cites W2767540968 @default.
- W2904693773 doi "https://doi.org/10.1111/1365-2664.13327" @default.
- W2904693773 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6559282" @default.
- W2904693773 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31217633" @default.
- W2904693773 hasPublicationYear "2019" @default.
- W2904693773 type Work @default.
- W2904693773 sameAs 2904693773 @default.
- W2904693773 citedByCount "19" @default.
- W2904693773 countsByYear W29046937732020 @default.
- W2904693773 countsByYear W29046937732021 @default.
- W2904693773 countsByYear W29046937732022 @default.
- W2904693773 countsByYear W29046937732023 @default.
- W2904693773 crossrefType "journal-article" @default.
- W2904693773 hasAuthorship W2904693773A5011629984 @default.
- W2904693773 hasAuthorship W2904693773A5012720814 @default.
- W2904693773 hasAuthorship W2904693773A5019054095 @default.
- W2904693773 hasAuthorship W2904693773A5021802314 @default.
- W2904693773 hasAuthorship W2904693773A5022190399 @default.
- W2904693773 hasAuthorship W2904693773A5060725859 @default.
- W2904693773 hasBestOaLocation W29046937731 @default.
- W2904693773 hasConcept C106934330 @default.
- W2904693773 hasConcept C144024400 @default.
- W2904693773 hasConcept C149923435 @default.
- W2904693773 hasConcept C185933670 @default.
- W2904693773 hasConcept C18903297 @default.
- W2904693773 hasConcept C199360897 @default.
- W2904693773 hasConcept C205649164 @default.
- W2904693773 hasConcept C24518262 @default.
- W2904693773 hasConcept C2908647359 @default.
- W2904693773 hasConcept C2992101111 @default.
- W2904693773 hasConcept C41008148 @default.
- W2904693773 hasConcept C517289559 @default.
- W2904693773 hasConcept C66698415 @default.
- W2904693773 hasConcept C81977670 @default.
- W2904693773 hasConcept C86803240 @default.
- W2904693773 hasConceptScore W2904693773C106934330 @default.
- W2904693773 hasConceptScore W2904693773C144024400 @default.
- W2904693773 hasConceptScore W2904693773C149923435 @default.
- W2904693773 hasConceptScore W2904693773C185933670 @default.
- W2904693773 hasConceptScore W2904693773C18903297 @default.
- W2904693773 hasConceptScore W2904693773C199360897 @default.
- W2904693773 hasConceptScore W2904693773C205649164 @default.
- W2904693773 hasConceptScore W2904693773C24518262 @default.
- W2904693773 hasConceptScore W2904693773C2908647359 @default.
- W2904693773 hasConceptScore W2904693773C2992101111 @default.
- W2904693773 hasConceptScore W2904693773C41008148 @default.
- W2904693773 hasConceptScore W2904693773C517289559 @default.
- W2904693773 hasConceptScore W2904693773C66698415 @default.
- W2904693773 hasConceptScore W2904693773C81977670 @default.
- W2904693773 hasConceptScore W2904693773C86803240 @default.
- W2904693773 hasFunder F4320306076 @default.