Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904698128> ?p ?o ?g. }
- W2904698128 endingPage "1725" @default.
- W2904698128 startingPage "1711" @default.
- W2904698128 abstract "In many applications, high-dimensional data points can be well represented by low-dimensional subspaces. To identify the subspaces, it is important to capture a global and local structure of the data which is achieved by imposing low-rank and sparseness constraints on the data representation matrix. In low-rank sparse subspace clustering (LRSSC), nuclear and ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norms are used to measure rank and sparsity. However, the use of nuclear and ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norms leads to an overpenalized problem and only approximates the original problem. In this paper, we propose two ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> quasi-norm-based regularizations. First, this paper presents regularization based on multivariate generalization of minimax-concave penalty (GMC-LRSSC), which contains the global minimizers of a ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> quasi-norm regularized objective. Afterward, we introduce the Schatten-0 (S <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> ) and ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> -regularized objective and approximate the proximal map of the joint solution using a proximal average method (S <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> /ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> -LRSSC). The resulting nonconvex optimization problems are solved using an alternating direction method of multipliers with established convergence conditions of both algorithms. Results obtained on synthetic and four real-world datasets show the effectiveness of GMC-LRSSC and S <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> /ℓ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</sub> -LRSSC when compared to state-of-the-art methods." @default.
- W2904698128 created "2018-12-22" @default.
- W2904698128 creator A5032871012 @default.
- W2904698128 creator A5064824381 @default.
- W2904698128 date "2020-04-01" @default.
- W2904698128 modified "2023-09-30" @default.
- W2904698128 title "$ell_0$ -Motivated Low-Rank Sparse Subspace Clustering" @default.
- W2904698128 cites W1497701622 @default.
- W2904698128 cites W1749002875 @default.
- W2904698128 cites W1884731728 @default.
- W2904698128 cites W1964888939 @default.
- W2904698128 cites W1965125844 @default.
- W2904698128 cites W1967138577 @default.
- W2904698128 cites W1980454827 @default.
- W2904698128 cites W1981458038 @default.
- W2904698128 cites W1985915435 @default.
- W2904698128 cites W1993962865 @default.
- W2904698128 cites W1997201895 @default.
- W2904698128 cites W1997605385 @default.
- W2904698128 cites W2003217181 @default.
- W2904698128 cites W2004544971 @default.
- W2904698128 cites W2005612613 @default.
- W2904698128 cites W2032240925 @default.
- W2904698128 cites W2037549374 @default.
- W2904698128 cites W2050834445 @default.
- W2904698128 cites W2054199929 @default.
- W2904698128 cites W2056201402 @default.
- W2904698128 cites W2065220650 @default.
- W2904698128 cites W2068548513 @default.
- W2904698128 cites W2075547019 @default.
- W2904698128 cites W2091334405 @default.
- W2904698128 cites W2096220424 @default.
- W2904698128 cites W2100068253 @default.
- W2904698128 cites W2103268563 @default.
- W2904698128 cites W2111854674 @default.
- W2904698128 cites W2115706991 @default.
- W2904698128 cites W2119047401 @default.
- W2904698128 cites W2121947440 @default.
- W2904698128 cites W2123921160 @default.
- W2904698128 cites W2125874614 @default.
- W2904698128 cites W2129131372 @default.
- W2904698128 cites W2129812935 @default.
- W2904698128 cites W2130855892 @default.
- W2904698128 cites W2132914434 @default.
- W2904698128 cites W2134332047 @default.
- W2904698128 cites W2145962650 @default.
- W2904698128 cites W2150414161 @default.
- W2904698128 cites W2154332973 @default.
- W2904698128 cites W2167144347 @default.
- W2904698128 cites W2168580857 @default.
- W2904698128 cites W2195250169 @default.
- W2904698128 cites W2203973972 @default.
- W2904698128 cites W2233977894 @default.
- W2904698128 cites W2260322515 @default.
- W2904698128 cites W2278063849 @default.
- W2904698128 cites W2295652899 @default.
- W2904698128 cites W2331639718 @default.
- W2904698128 cites W2336294793 @default.
- W2904698128 cites W2339886534 @default.
- W2904698128 cites W2345059010 @default.
- W2904698128 cites W2462350434 @default.
- W2904698128 cites W2466348787 @default.
- W2904698128 cites W2509853781 @default.
- W2904698128 cites W2527399347 @default.
- W2904698128 cites W2545016534 @default.
- W2904698128 cites W2561426102 @default.
- W2904698128 cites W2576039182 @default.
- W2904698128 cites W2611328865 @default.
- W2904698128 cites W2620850570 @default.
- W2904698128 cites W2736076499 @default.
- W2904698128 cites W2736716203 @default.
- W2904698128 cites W2748391982 @default.
- W2904698128 cites W2752077201 @default.
- W2904698128 cites W2791026767 @default.
- W2904698128 cites W2884420828 @default.
- W2904698128 cites W2898401672 @default.
- W2904698128 cites W2962853966 @default.
- W2904698128 cites W2963178962 @default.
- W2904698128 cites W2963322354 @default.
- W2904698128 cites W3102415113 @default.
- W2904698128 cites W3105393233 @default.
- W2904698128 cites W4235618170 @default.
- W2904698128 cites W4250657332 @default.
- W2904698128 cites W4292363360 @default.
- W2904698128 doi "https://doi.org/10.1109/tcyb.2018.2883566" @default.
- W2904698128 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30561362" @default.
- W2904698128 hasPublicationYear "2020" @default.
- W2904698128 type Work @default.
- W2904698128 sameAs 2904698128 @default.
- W2904698128 citedByCount "59" @default.
- W2904698128 countsByYear W29046981282018 @default.
- W2904698128 countsByYear W29046981282019 @default.
- W2904698128 countsByYear W29046981282020 @default.
- W2904698128 countsByYear W29046981282021 @default.
- W2904698128 countsByYear W29046981282022 @default.
- W2904698128 countsByYear W29046981282023 @default.
- W2904698128 crossrefType "journal-article" @default.
- W2904698128 hasAuthorship W2904698128A5032871012 @default.