Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904699310> ?p ?o ?g. }
- W2904699310 endingPage "998" @default.
- W2904699310 startingPage "983" @default.
- W2904699310 abstract "Indirect biological damage due to reactive species produced in water radiolysis reactions is responsible for the majority of biological effect for low linear energy transfer (LET) radiation. Modeling water radiolysis and the subsequent interactions of reactive species, as well as track structures, is essential to model radiobiology on the microscale. Recently, chemistry models have been developed for Geant4-DNA to be used in combination with the comprehensive existing physics models. In the current work, the first detailed, independent, in silico validation of all species yields with published experimental observations and comparison with other radiobiological simulations is presented. Additionally, the effect of LET of protons and heavier ions on reactive species yield in the model was examined, as well as the completeness of the chemical reactions following the radiolysis within the time after physical interactions simulated in the model.Yields over time of reactive species were simulated for water radiolysis by incident electrons, protons, alpha particles, and ions with various LETs using Geant4 and RITRACKS simulation tools. Water dissociation and recombination was simulated using Geant4 to determine the completeness of chemical reactions at the end of the simulation. Yield validation was performed by comparing yields simulated using Geant4 with experimental observations and other simulations. Validation was performed for all species for low LET radiation and the solvated electron and hydroxyl radical for high LET ions.It was found that the Geant4-DNA chemistry yields were generally in good agreement with experimental observations and other simulations. However, the Geant4-DNA yields for the hydroxyl radical and hydrogen peroxide at the end of the chemistry stage were found to be respectively considerably higher and lower than the experimentally observed yields. Increasing the LET of incident hadrons increased the yield of secondary species and decreased the yield of primary species. The effect of LET on the yield of the hydroxyl radical at 100 ns simulated with Geant4 was in good agreement with experimental measurements. Additionally, by the end of the simulation only 40% of dissociated water molecules had been recombined and the rate of recombination was slowing.The yields simulated using Geant4 are within reasonable agreement with experimental observations. Higher LET radiation corresponds with increased yields of secondary species and decreased yields of primary species. These trends combined with the LET having similar effects on the 100 ns hydroxyl radical yield for Geant4 and experimental measurements indicate that Geant4 accurately models the effect of LET on radiolysis yields. The limited recombination within the modeled chemistry stage and the slowing rate of recombination at the end of the stage indicate potential long-range indirect biological damage." @default.
- W2904699310 created "2018-12-22" @default.
- W2904699310 creator A5016780104 @default.
- W2904699310 creator A5022735853 @default.
- W2904699310 creator A5027460327 @default.
- W2904699310 creator A5042203175 @default.
- W2904699310 creator A5057029431 @default.
- W2904699310 creator A5070217555 @default.
- W2904699310 creator A5072344157 @default.
- W2904699310 date "2018-12-26" @default.
- W2904699310 modified "2023-10-13" @default.
- W2904699310 title "Validation and investigation of reactive species yields of Geant4‐ <scp>DNA</scp> chemistry models" @default.
- W2904699310 cites W1529017748 @default.
- W2904699310 cites W1579820145 @default.
- W2904699310 cites W1587381510 @default.
- W2904699310 cites W1908199867 @default.
- W2904699310 cites W1926950498 @default.
- W2904699310 cites W1967080161 @default.
- W2904699310 cites W1968435538 @default.
- W2904699310 cites W1970875160 @default.
- W2904699310 cites W1987824639 @default.
- W2904699310 cites W1988373371 @default.
- W2904699310 cites W1990869665 @default.
- W2904699310 cites W1991073635 @default.
- W2904699310 cites W1993235736 @default.
- W2904699310 cites W1999205993 @default.
- W2904699310 cites W200039989 @default.
- W2904699310 cites W2004992022 @default.
- W2904699310 cites W2006397931 @default.
- W2904699310 cites W2020598608 @default.
- W2904699310 cites W2026812997 @default.
- W2904699310 cites W2030544564 @default.
- W2904699310 cites W2039339188 @default.
- W2904699310 cites W2039903903 @default.
- W2904699310 cites W2044648937 @default.
- W2904699310 cites W2048372247 @default.
- W2904699310 cites W2059024144 @default.
- W2904699310 cites W2059980566 @default.
- W2904699310 cites W2063803622 @default.
- W2904699310 cites W2093173927 @default.
- W2904699310 cites W2112749062 @default.
- W2904699310 cites W2121340522 @default.
- W2904699310 cites W2121519642 @default.
- W2904699310 cites W2128158076 @default.
- W2904699310 cites W2138884296 @default.
- W2904699310 cites W2178048599 @default.
- W2904699310 cites W2179145178 @default.
- W2904699310 cites W2189227215 @default.
- W2904699310 cites W2291766833 @default.
- W2904699310 cites W2300390337 @default.
- W2904699310 cites W2523156215 @default.
- W2904699310 cites W2523476717 @default.
- W2904699310 cites W2529464715 @default.
- W2904699310 cites W2533217032 @default.
- W2904699310 cites W2550617848 @default.
- W2904699310 cites W2575459663 @default.
- W2904699310 cites W2602915074 @default.
- W2904699310 cites W2789300899 @default.
- W2904699310 cites W2808069317 @default.
- W2904699310 cites W3102882422 @default.
- W2904699310 cites W4317516 @default.
- W2904699310 cites W76217191 @default.
- W2904699310 doi "https://doi.org/10.1002/mp.13332" @default.
- W2904699310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30536689" @default.
- W2904699310 hasPublicationYear "2018" @default.
- W2904699310 type Work @default.
- W2904699310 sameAs 2904699310 @default.
- W2904699310 citedByCount "25" @default.
- W2904699310 countsByYear W29046993102019 @default.
- W2904699310 countsByYear W29046993102020 @default.
- W2904699310 countsByYear W29046993102021 @default.
- W2904699310 countsByYear W29046993102022 @default.
- W2904699310 countsByYear W29046993102023 @default.
- W2904699310 crossrefType "journal-article" @default.
- W2904699310 hasAuthorship W2904699310A5016780104 @default.
- W2904699310 hasAuthorship W2904699310A5022735853 @default.
- W2904699310 hasAuthorship W2904699310A5027460327 @default.
- W2904699310 hasAuthorship W2904699310A5042203175 @default.
- W2904699310 hasAuthorship W2904699310A5057029431 @default.
- W2904699310 hasAuthorship W2904699310A5070217555 @default.
- W2904699310 hasAuthorship W2904699310A5072344157 @default.
- W2904699310 hasBestOaLocation W29046993102 @default.
- W2904699310 hasConcept C111337013 @default.
- W2904699310 hasConcept C121332964 @default.
- W2904699310 hasConcept C125118446 @default.
- W2904699310 hasConcept C134056017 @default.
- W2904699310 hasConcept C139066938 @default.
- W2904699310 hasConcept C145148216 @default.
- W2904699310 hasConcept C145420912 @default.
- W2904699310 hasConcept C177322064 @default.
- W2904699310 hasConcept C177801218 @default.
- W2904699310 hasConcept C178790620 @default.
- W2904699310 hasConcept C179428855 @default.
- W2904699310 hasConcept C185544564 @default.
- W2904699310 hasConcept C185592680 @default.
- W2904699310 hasConcept C2776778087 @default.
- W2904699310 hasConcept C33923547 @default.
- W2904699310 hasConcept C42296456 @default.