Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904704617> ?p ?o ?g. }
- W2904704617 endingPage "868" @default.
- W2904704617 startingPage "852" @default.
- W2904704617 abstract "Pore pressure (PP) study can provide insightful information about evolution history and/or geological process taking place over a region. Conventional methods, mostly are of deterministic, and they do not allow considering underlying variability and uncertainty. Here we implement Bayesian neural networks (BNN) optimized by Scaled Conjugate Gradient (SCG) and Hybrid Monte Carlo (HMC) approach to model the PP and estimate the uncertainty in prediction from well log data of well U1343E located at Bering sea slope region of the IODP Expedition 323. In the first step, to create representative samples of well log and corresponding PP samples, Eaton’s and porosity methods are employed to estimate PP empirically from well log data (e.g., gamma ray, sonic velocity, bulk density and sonic derived porosity). In the second step, in total 357 representative samples are used to build a statistical model in Bayesian framework to model the PP against depth. Prior to actual data analysis, we conducted a series of experiments combining with auto-correlation function (ACF) and/or partial autocorrelation function (PACF) analysis to fix network structure (e.g., input lag, number of hidden node) and the bounds of network hyper-parameter. In contrast to previous approach, we seek to develop a mechanism which allows to explore the link between past PP and/or well log history and present PP under rapid sedimentation rate and changing environment. The model exhibits excellent performance between predicted and computed PP with Pearson's correlation coefficient, reduction of error (RE) (RESCG-BNN ∼ 0.99; REHMC-BNN ∼ 0.99), and index of agreement (IA) (IASCG-BNN ∼ 0.99; IAHMC-BNN ∼ 0.98). Comparison based on coefficient of determination, R2, it is obtained that BNN produced superior results than the conventional artificial neural networks (ANNs). Moreover, at 530 mbsf (meter below sea floor), abrupt PP change could be linked to the transition from Pliocene to Pleistocene. The approach used here, could be useful to identify overpressure zones (OPZ) and to understand the role of past PP/well log to present PP history in many other complex geo-environmental applications." @default.
- W2904704617 created "2018-12-22" @default.
- W2904704617 creator A5082589248 @default.
- W2904704617 creator A5088600971 @default.
- W2904704617 date "2019-03-01" @default.
- W2904704617 modified "2023-09-30" @default.
- W2904704617 title "Short term memory efficient pore pressure prediction via Bayesian neural networks at Bering Sea slope of IODP expedition 323" @default.
- W2904704617 cites W1498436455 @default.
- W2904704617 cites W1586335931 @default.
- W2904704617 cites W1803660778 @default.
- W2904704617 cites W1969658508 @default.
- W2904704617 cites W1978878626 @default.
- W2904704617 cites W1981685953 @default.
- W2904704617 cites W1982433767 @default.
- W2904704617 cites W1985304215 @default.
- W2904704617 cites W1988476535 @default.
- W2904704617 cites W1988787358 @default.
- W2904704617 cites W1989881476 @default.
- W2904704617 cites W1993331186 @default.
- W2904704617 cites W1997794719 @default.
- W2904704617 cites W1999140879 @default.
- W2904704617 cites W2000716539 @default.
- W2904704617 cites W2008115350 @default.
- W2904704617 cites W2029401923 @default.
- W2904704617 cites W2039137852 @default.
- W2904704617 cites W2048572409 @default.
- W2904704617 cites W2051812123 @default.
- W2904704617 cites W2052694638 @default.
- W2904704617 cites W2055072688 @default.
- W2904704617 cites W2057018326 @default.
- W2904704617 cites W2065385043 @default.
- W2904704617 cites W2068395046 @default.
- W2904704617 cites W2070381308 @default.
- W2904704617 cites W2070938601 @default.
- W2904704617 cites W2072642501 @default.
- W2904704617 cites W2075563298 @default.
- W2904704617 cites W2092172498 @default.
- W2904704617 cites W2108218452 @default.
- W2904704617 cites W2134004769 @default.
- W2904704617 cites W2136971218 @default.
- W2904704617 cites W2146214686 @default.
- W2904704617 cites W2161524698 @default.
- W2904704617 cites W2324044936 @default.
- W2904704617 cites W2335044830 @default.
- W2904704617 cites W2441508879 @default.
- W2904704617 cites W2474908393 @default.
- W2904704617 cites W2521575081 @default.
- W2904704617 cites W2597987609 @default.
- W2904704617 cites W2735841510 @default.
- W2904704617 cites W2752390154 @default.
- W2904704617 cites W2768254853 @default.
- W2904704617 cites W2799938205 @default.
- W2904704617 cites W2825552760 @default.
- W2904704617 cites W2883580140 @default.
- W2904704617 cites W2894965144 @default.
- W2904704617 cites W4256207379 @default.
- W2904704617 doi "https://doi.org/10.1016/j.measurement.2018.12.034" @default.
- W2904704617 hasPublicationYear "2019" @default.
- W2904704617 type Work @default.
- W2904704617 sameAs 2904704617 @default.
- W2904704617 citedByCount "18" @default.
- W2904704617 countsByYear W29047046172019 @default.
- W2904704617 countsByYear W29047046172020 @default.
- W2904704617 countsByYear W29047046172021 @default.
- W2904704617 countsByYear W29047046172022 @default.
- W2904704617 countsByYear W29047046172023 @default.
- W2904704617 crossrefType "journal-article" @default.
- W2904704617 hasAuthorship W2904704617A5082589248 @default.
- W2904704617 hasAuthorship W2904704617A5088600971 @default.
- W2904704617 hasConcept C105795698 @default.
- W2904704617 hasConcept C107673813 @default.
- W2904704617 hasConcept C11413529 @default.
- W2904704617 hasConcept C127313418 @default.
- W2904704617 hasConcept C14036430 @default.
- W2904704617 hasConcept C143724316 @default.
- W2904704617 hasConcept C151730666 @default.
- W2904704617 hasConcept C154945302 @default.
- W2904704617 hasConcept C33923547 @default.
- W2904704617 hasConcept C41008148 @default.
- W2904704617 hasConcept C50644808 @default.
- W2904704617 hasConcept C5297727 @default.
- W2904704617 hasConcept C78458016 @default.
- W2904704617 hasConcept C86803240 @default.
- W2904704617 hasConceptScore W2904704617C105795698 @default.
- W2904704617 hasConceptScore W2904704617C107673813 @default.
- W2904704617 hasConceptScore W2904704617C11413529 @default.
- W2904704617 hasConceptScore W2904704617C127313418 @default.
- W2904704617 hasConceptScore W2904704617C14036430 @default.
- W2904704617 hasConceptScore W2904704617C143724316 @default.
- W2904704617 hasConceptScore W2904704617C151730666 @default.
- W2904704617 hasConceptScore W2904704617C154945302 @default.
- W2904704617 hasConceptScore W2904704617C33923547 @default.
- W2904704617 hasConceptScore W2904704617C41008148 @default.
- W2904704617 hasConceptScore W2904704617C50644808 @default.
- W2904704617 hasConceptScore W2904704617C5297727 @default.
- W2904704617 hasConceptScore W2904704617C78458016 @default.
- W2904704617 hasConceptScore W2904704617C86803240 @default.
- W2904704617 hasFunder F4320321026 @default.